
	

15-110:	Principles	of	Computing,	Spring	2018	
	

Problem	Set	6	(PS6)	
Due:	Friday,	March	2	by	2:30PM	via	Gradescope	Hand-in	

	

HANDIN	INSTRUCTIONS	
	
Download	a	copy	of	this	PDF	file.	You	have	two	ways	to	fill	in	your	answers:	
	

1. Just	edit	(preferred)	-	Use	any	PDF	editor	(e.g.,	Preview	on	Mac,	iAnnotate	on	mobile,	
Acrobat	Pro	on	pretty	much	anything)	to	typeset	your	answers	in	the	given	spaces.	You	
can	even	draw	pictures	or	take	a	picture	of	a	drawing	and	import	it	in	the	correct	place	
in	the	document.	That's	it.		(Acrobat	Pro	is	available	on	all	cluster	machines.)	
	

2. Print	and	Scan		-	Alternatively,	print	this	file,	write	your	answers	neatly	by	hand,	and	
then	scan	it	into	a	PDF	file.	This	is	labor-intensive	and	must	be	done	by	the	deadline.		

	
Once	you	have	prepared	your	submission,	submit	it	on	Gradescope.	A	link	to	Gradescope	is	
provided	in	our	Canvas	course	portal.	
	
Fill	in	your	answers	ONLY	in	the	spaces	provided.	Any	answers	entered	outside	of	the	spaces	
provided	may	not	be	graded.	Do	not	add	additional	pages.	We	will	only	score	answers	in	the	
given	answer	spaces	provided.	If	we	cannot	read	your	answer	or	it	contains	ambiguous	
information,	you	will	not	receive	credit	for	that	answer.	
	
Be	sure	to	enter	your	full	name	below	along	with	your	section	letter	(A,	B,	C,	etc.)	and	your	
Andrew	ID.	Submit	your	work	on	Gradescope	by	2:30PM	on	the	Friday	given	above.		
	
REMINDER:	Sharing	your	answers	with	another	student	who	is	completing	the	assignment,	even	
in	another	semester,	is	a	violation	of	the	academic	integrity	policies	of	this	course.	Please	keep	
these	answers	to	yourself.	
	
	
Name	(First	Last)			 ___	
	
	
Section					__________		 Andrew	ID	 ___________________________________	
	 	

1. (1.5	pts)	Consider	the	following	two-dimensional	table	of	positive	integers.	
	

4	 3	
12	 5	
26	 11	
5	 9	

	
(a)	Show	how	this	table	would	be	represented	in	Python	as	a	two-dimensional	list.		

	
	
(b)		Assuming	that	the	parameter	matrix	always	represents	a	two-dimensional	list,	complete	
the	function	below	that	computes	and	returns	the	number	of	odd	integers	in	the	matrix.
	

	
(c)	For	the	matrix	shown	at	the	top	of	the	problem,	what	are	the	values	of:	
	
	
 len(matrix)

 len(matrix[0])	
	
	

 def count_odd(matrix):

 count = 0

 for row in range(0,len(matrix)):

 for col in range(0,len(matrix[row])):

 if _____________________________________:

 count = ___________________________

 return count

	

	

	

	
matrix = ___	

2. (2	pts)	At	commencement,	an	organizer	is	determining	how	to	seat	graduates	before	they	
come	up	on	stage	for	their	diplomas.	Students	are	called	up	to	the	stage	alphabetically.	
	
Algorithm	1:	Students	line	up	and	are	seated	alphabetically	in	seats,	leaving	no	seat	open.	
	
Algorithm	2:	Students	are	seated	in	the	order	they	arrive,	leaving	no	seat	open.	Each	student	
holds	a	card	with	the	seat	number	of	the	student	that	follows	them	in	alphabetical	order,	
except	the	last	student	alphabetically.	The	organizer	only	keeps	track	of	the	first	student	
alphabetically.	
	
(a) If	a	new	graduating	student	arrives	at	commencement	after	everyone	has	been	seated	

and	he/she	is	first	alphabetically,	which	algorithm	makes	seating	that	student	faster?	
What	needs	to	be	done	in	each	case?	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
(b) If	the	organizer	needs	to	call	up	the	last	student	alphabetically	for	a	special	award,	which	

algorithm	allows	the	organizer	to	find	this	student	more	quickly?	What	needs	to	be	done	
in	each	case?		

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	

3. (1.5	pt)	An	RPN	expression	can	be	stored	in	a	list	as	follows:	
	

rpn = [6, 2, "+", 9, 4, "-", "*", 1, 8, 2, "/", "+", "/"]
	
Trace	how	the	stack-based	algorithm	for	RPN	expressions	computes	the	value	of	the	given	RPN	
expression	stored	as	a	list.	(Note:	We'll	use	integer	division	for	"/".)	
	
Complete	a	new	stack	trace	whenever	a	number	is	pushed	or	popped	to	show	how	the	stack	
progresses	throughout	the	computation.	The	first	three	stack	traces	are	shown	for	you.	Use	
Courier	12	pt	font	to	make	the	spacing	easier	to	handle	if	you	type	answers.	
	

	
4.	(1.5	pts)	A	stack	is	a	data	structure	with	a	LIFO	(Last	In	First	Out)	property.	That	is,	the	last	
element	you	put	in	is	the	first	one	you	can	take	out.		
	
Recall	that	for	stacks,	the	insert	operation	is	called	push.	If	your	stack	s	is	implemented	using	a	
list	and	you	want	to	put	x	on	the	stack,	push	is	done	this	way:	
	
s.append(x)
	
This	means	that	the	end	of	the	list	is	acting	as	the	"top	of	the	stack".		
	
The	remove	operation	is	called	pop.	If	your	stack	is	implemented	using	a	list,	pop	is	done	this	
way:	
	
y = s.pop()
	
(The	pop	function	without	a	parameter	removes	and	returns	the	last	element	of	the	list	since	the	
end	of	the	list	is	the	"top	of	the	stack".	This	is	different	than	the	remove	function,	which	
removes	the	element	specified	as	its	parameter	but	returns	None.)	
	

	2												
6	6	8											
--

Final result returned: __________

Now	consider	a	queue,	a	data	structure	with	a	FIFO	(First	In	First	Out)	property.	In	this	case,	the	
first	element	you	put	in	is	the	first	one	you	can	take	out.	A	queue	is	like	a	line	you	would	stand	in	
when	waiting	for	service	at	a	store	checkout,	when	buying	tickets	at	a	movie	theater,	or	when	
paying	a	vehicle	toll	at	a	bridge.	With	a	queue,	you	enqueue	(enter	the	queue)	on	to	the	rear	of	
the	queue,	and	you	dequeue	(depart	the	queue)	from	the	front	of	the	queue.	
	
Suppose	we	represent	a	queue	using	a	list	named	q	such	that	the	first	element	in	the	list	(at	
index	0)	is	the	front	of	the	queue	and	the	last	element	in	the	list	(at	index	len(q)-1)	is	the	rear	of	
the	queue.	
	
	
(a) Show	how	to	enqueue	an	element	stored	in	the	variable	z	on	to	the	rear	of	the	queue	q	using	

Python,	assuming	that	q	is	a	list	that	behaves	like	a	queue.	
	
	
	
	
	
	
	
	
	

(b) Show	how	to	dequeue	an	element	from	the	front	of	the	queue	q	into	variable	z	and	return	
this	element	using	Python,	assuming	that	q	is	a	list	that	behaves	like	a	queue.	(CAREFUL:	
There	is	an	extra	condition	needed	to	make	sure	this	operation	does	not	fail.)	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

def enqueue(q, z):

 __

def dequeue(q):

 if _____________________________:

 return None

 else:

 z = ______________________ # get "front" element

 ____________________________ # remove it from queue

 return z

5.	(1.5	pts)	A	hash	table	has	11	buckets	(i.e.	its	table	size	is	11).	When	strings	are	stored	in	the	
hash	table,	we	use	the	following	hash	function	to	return	the	bucket	that	is	used	to	store	the	
string	in:	

def h(string_data, table_size):
 k = 0
 for i in range(0,len(string_data)):
 k = k * 256 + ord(string_data[i])
 bucket_number = k % table_size
 return bucket_number
	
In	the	function	above,	ord(string_data[i])	returns	the	ASCII	code	of	the	ith	character	
of	string_data.	Here	are	the	ASCII	codes	for	the	lowercase	letters:	
	
 a b c d e f g h i j k l m
 97 98 99 100 101 102 103 104 105 106 107 108 109

 n o p q r s t u v w x y z
 110 111 112 113 114 115 116 117 118 119 120 121 122
	
(a) Given	the	hash	function	above,	in	which	bucket	would	the	following	words	be	stored?	

Show	the	formula	used	to	compute	the	bucket	number.	Do	not	write	the	final	answer	
only.	
	
The	formula	for	the	first	element	is	shown	for	you.	Also	indicate	if	this	string	would	
collide	with	any	string	before	it.	
	

"can"
 k = ((0 * 256 + 99) * 256 + 97) * 256 + 110 = 6513006
 bucket_number = k % 11 = 5

"bag"
 k = __

 bucket_number = k % 11 = _________ Collision?(y/n)_______

"bin"
 k = __

 bucket_number = k % 11 = _________ Collision?(y/n)_______

"jug"
 k = __

 bucket_number = k % 11 = _________ Collision?(y/n)_______

6.	(2	pts)	Based	on	Chapter	3	of	Blown	To	Bits,	answer	the	following	questions	about	data.	

a. Identify	the	redacted	text	from	the	following	sentence.	(The	reading	gives	you	a	clue	on	
how	to	capture	the	text.)	

Alan	told	Ada	that	his	password	for	the	computing	server	is	crackthecode		.	

	
	
	
	

b. A	standard	compact	disc	of	music	can	hold	up	to	80	minutes	of	music.	If	the	music	were	
stored	in	a	mp3	format	instead	of	its	current	format,	would	the	disc	store	more	music	or	
less	music?	Why?	

	

	
	

c. Find	the	secret	person	in	the	following	company	announcement.	(HINT:	Use	the	principle	
of	steganography	as	explained	in	the	text.)		
	
The	operator	makes	critical	operations	rapidly	to	improve	network	authentication.	
	
	
	
	
	
	

d. Herman	puts	a	compact	disc	of	data	by	itself	in	a	sealed	time	capsule	that	is	to	be	opened	
100	years	from	now	so	it	can	be	utilized.	Let's	assume	that	the	CD	does	not	decay	or	
change	in	any	way	so	it	comes	out	exactly	as	it	was	put	in.	Based	on	the	reading	in	the	
chapter,	what	is	the	main	problem	with	storing	the	data	for	100	years	this	way	so	others	
can	use	it	later?	

	

	

	

	

	

