
	 Page	1	

	

15-110:	Principles	of	Computing,	Spring	2018	
	

Problem	Set	5	(PS5)	
Due:	Friday,	February	23	by	2:30PM	via	Gradescope	Hand-in	

	

HANDIN	INSTRUCTIONS	
	
Download	a	copy	of	this	PDF	file.	You	have	two	ways	to	fill	in	your	answers:	
	

1. Just	edit	(preferred)	-	Use	any	PDF	editor	(e.g.,	Preview	on	Mac,	iAnnotate	on	mobile,	
Acrobat	Pro	on	pretty	much	anything)	to	typeset	your	answers	in	the	given	spaces.	You	
can	even	draw	pictures	or	take	a	picture	of	a	drawing	and	import	it	in	the	correct	place	in	
the	document.	That's	it.		(Acrobat	Pro	is	available	on	all	cluster	machines.)	
	

2. Print	and	Scan		-	Alternatively,	print	this	file,	write	your	answers	neatly	by	hand,	and	
then	scan	it	into	a	PDF	file.	This	is	labor-intensive	and	must	be	done	by	the	deadline.		

	
Once	you	have	prepared	your	submission,	submit	it	on	Gradescope.	A	link	to	Gradescope	is	
provided	in	our	Canvas	course	portal.	
	
Fill	in	your	answers	ONLY	in	the	spaces	provided.	Any	answers	entered	outside	of	the	spaces	
provided	may	not	be	graded.	Do	not	add	additional	pages.	We	will	only	score	answers	in	the	
given	answer	spaces	provided.	If	we	cannot	read	your	answer	or	it	contains	ambiguous	
information,	you	will	not	receive	credit	for	that	answer.	
	
Be	sure	to	enter	your	full	name	below	along	with	your	section	letter	(A,	B,	C,	etc.)	and	your	
Andrew	ID.	Submit	your	work	on	Gradescope	by	2:30PM	on	the	Friday	given	above.		
	
REMINDER:	Sharing	your	answers	with	another	student	who	is	completing	the	assignment,	even	in	
another	semester,	is	a	violation	of	the	academic	integrity	policies	of	this	course.	Please	keep	these	
answers	to	yourself.	
	
	
Name	(First	Last)			 ___	
	
	
Section					__________		 Andrew	ID	 ___________________________________	
	 	

	 Page	2	

1. (1	pt)	Homer	Simpson	is	holding	up	a	picture	to	Bart	as	shown	below.	Briefly	explain	what	big	
computational	principle	he	is	illustrating.		
	

	
	

2. (2	pts)	Let's	reconsider	the	Towers	of	Hanoi	problem.	Recall	that	the	priests	had	64	discs,	and	
once	they	solved	the	problem,	the	world	would	end.	Thankfully,	they	didn't	solve	the	problem,	
and	we'll	see	why	here.	

	
(a) The	Towers	of	Hanoi	problem	requires	127	moves	for	7	discs.	Thinking	recursively,	how	

many	moves	are	required	for	8	discs?	Briefly	state	how	you	used	recursion	to	come	up	with	
your	answer.	
	
	
	
	
	
	
	

(b) How	many	moves	are	required		
to	move	n	discs	as	a	function	of	n?		
	
	

(c) Now	back	to	the	priests.	If	they	had	64	discs	and	moved	one	disc	per	hour	(remember	
these	were	pretty	heavy	for	priests),	how	long	would	it	take	for	them	to	solve	the	problem	
if	they	didn't	stop	to	do	anything	else?	Express	your	answer	in	years.		
	
	

	

	 	

	

	

	

	

	 Page	3	

3. (2.5	pts)	Recall	the	recursive	binary	search	algorithm	discussed	in	class,	with	its	Python	
implementation	below.	

def bs_helper(datalist, key, lower, upper):
 if lower + 1 == upper: # base case: range empty
 return None
 mid = (lower + upper)//2
 if key == datalist[mid]: # base case: found key
 return mid
 if key < datalist[mid]:
 return bs_helper(datalist, key, lower, mid)
 else:
 return bs_helper(datalist, key, mid, upper)

def bsearch(datalist, key):
 return bs_helper(datalist, key, -1, len(datalist))

Let	datalist	=	
[5, 12, 14, 19, 23, 27, 33, 39, 45, 56, 61, 70, 79, 81, 98]

(a)	Show	the	sequence	of	recursive	calls	that	are	made	and	the	final	returned	result	when	we	
search	for	the	key	12.	The	first	two	function	calls	are	given	for	you.	

	

	

	

	

	

(b)	Show	the	sequence	of	recursive	calls	that	are	made	and	the	final	returned	result	when	we	
search	for	the	key	50.	The	first	two	function	calls	are	given	for	you.	

	

	

	

	

	

	

bsearch(datalist, 12)			
	
→ bs_helper(datalist, 12, -1, 15)

→	

	

	

bsearch(datalist, 50)			
	
→ bs_helper(datalist, 50, -1, 15)

→	

	

	

	 Page	4	

4.	(1.5	pts)	Consider	the	list	[97,	58,	86,	14,	40,	71,	85,	39]	which	we	want	to	sort	using	Merge	Sort:	

Merge	Sort	Algorithm:	
1.	Sort	the	first	half	of	the	list.	
2.	Sort	the	second	half	of	the	list.	
3.	Merge	the	two	sorted	halves	to	get	a	sorted	list.	

After	steps	1	and	2,	we	get	two	sorted	halves:	a	=	[14,	58,	86,	97]	and	b	=	[39,	40,	71,	85].	

(a) Show	the	merge	process	of	step	3	to	create	a	merged	list	c	using	the	sorted	lists	above	by	
tracing	the	merge	algorithm.	Circle	the	two	values	that	are	compared	for	each	iteration	
and	show	which	value	gets	appended	to	list	c.	The	first	line	is	shown	for	you.	
Once	you	run	out	of	data	from	one	list,	append	the	rest	of	the	other	list	to	c.	You	may	not	
need	all	of	the	rows	given.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

(b) How	do	you	make	the	Merge	Sort	algorithm	above	recursive?	

	

	
	

a b c

14 58 86 97 39 40 71 85 14

14 58 86 97 39 40 71 85

14 58 86 97 39 40 71 85

14 58 86 97 39 40 71 85

14 58 86 97 39 40 71 85

14 58 86 97 39 40 71 85

14 58 86 97 39 40 71 85

14 58 86 97 39 40 71 85

14 58 86 97 39 40 71 85

14 58 86 97 39 40 71 85

	

	 Page	5	

5. (2	pts)	We	wish	to	count	how	many	multiples	of	6	are	in	a	list	of	integers.	Here	is	a	recursive	
algorithm	we	can	follow:	

1.	If	the	list	is	empty,	there	are	no	multiples	of	6	in	the	list.	
2.	Otherwise,	if	the	first	integer	in	the	list	is	a	multiple	of	6,	then	the	total	amount		
				of	multiples	of	6	in	the	list	is	1	plus	the	number	of	multiples	of	6	in	the	rest	of	the	list.	
3.	Otherwise,	the	total	amount	of	multiples	of	6	in	the	list	is	just	the	total	amount	of	
				multiples	of	6	in	the	rest	of	the	list.	

By	"rest	of	the	list",	we	mean	the	list	without	the	first	element.	

						Complete	the	recursive	implementation	of	this	function	in	Python3:		
	

	
	
6.	(1	pt)	The	zip	command	has	a	-r	option	for	recursive	zip.	For	example,	you	could	type:	

	 zip –r lab.zip lab/*

Thinking	recursively,	how	does	this	option	work	when	you	zip	the	lab	directory?	

	

def count_multiples_of_6(numlist):

 if ______________________________:

 return 0

 elif ___:

 return __

 else

 return __

	

	

