
	 Page	1	

	

15-110:	Principles	of	Computing,	Spring	2018	
	

Problem	Set	4	(PS4)	
Due:	Friday,	February	16	by	2:30PM	via	Gradescope	Hand-in	

	

HANDIN	INSTRUCTIONS	
	
Download	a	copy	of	this	PDF	file.	You	have	two	ways	to	fill	in	your	answers:	
	

1. Just	edit	(preferred)	-	Use	any	PDF	editor	(e.g.,	Preview	on	Mac,	iAnnotate	on	mobile,	
Acrobat	Pro	on	pretty	much	anything)	to	typeset	your	answers	in	the	given	spaces.	You	
can	even	draw	pictures	or	take	a	picture	of	a	drawing	and	import	it	in	the	correct	place	
in	the	document.	That's	it.		(Acrobat	Pro	is	available	on	all	cluster	machines.)	
	

2. Print	and	Scan		-	Alternatively,	print	this	file,	write	your	answers	neatly	by	hand,	and	
then	scan	it	into	a	PDF	file.	This	is	labor-intensive	and	must	be	done	by	the	deadline.		

	
Once	you	have	prepared	your	submission,	submit	it	on	Gradescope.	A	link	to	Gradescope	is	
provided	in	our	Canvas	course	portal.	
	
Fill	in	your	answers	ONLY	in	the	spaces	provided.	Any	answers	entered	outside	of	the	spaces	
provided	may	not	be	graded.	Do	not	add	additional	pages.	We	will	only	score	answers	in	the	
given	answer	spaces	provided.	If	we	cannot	read	your	answer	or	it	contains	ambiguous	
information,	you	will	not	receive	credit	for	that	answer.	
	
Be	sure	to	enter	your	full	name	below	along	with	your	section	letter	(A,	B,	C,	etc.)	and	your	
Andrew	ID.	Submit	your	work	on	Gradescope	by	2:30PM	on	the	Friday	given	above.		
	
REMINDER:	Sharing	your	answers	with	another	student	who	is	completing	the	assignment,	even	
in	another	semester,	is	a	violation	of	the	academic	integrity	policies	of	this	course.	Please	keep	
these	answers	to	yourself.	
	
	
Name	(First	Last)			 ___	
	
	
Section					__________		 Andrew	ID	 ___________________________________	
	 	

	 Page	2	

1. (3	pts)	In	class,	we	discussed	the	linear	search	algorithm,	shown	below	in	Python:	
	

def search(datalist, key):
 index = 0
 while index < len(datalist):
 if datalist[index] == key:
 return index
 index = index + 1
 return None

Suppose	that	we	know	the	additional	facts	that	the	list	is	sorted	in	"increasing	order"	
(i.e.	datalist[i]	≤	datalist[i+1],	for	all	i	such	that	0	≤	i	<	len(datalist)-1.		
For	example,	if	our	list	has	the	values	[25,	37,	45,	61,	73,	79,	82,	90],	then	if	we	want	to	
search	for	the	key	70	using	linear	search,	we	can	stop	when	we	reach	73	and	
return	None	(since	we	know	the	list	is	sorted	in	increasing	order	and	we	can't	possibly	find	
70	once	we	encounter	73).	
	

a. Revise	the	function	above	so	that	it	also	returns	None	as	soon	as	it	can	be	determined	
that	the	key	cannot	be	in	the	list,	assuming	that	the	list	is	sorted	in	increasing	order.	
(HINT:	You	only	need	to	add	an	additional	instruction	inside	the	while	loop.)	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

b. You	are	a	historian	and	you	have	a	stack	of	photographs,	ordered	in	increasing	order	from	
earliest	year	to	latest	year.	You	use	linear	search	to	search	for	a	specific	year	in	the	stack.	
Let's	say	that	it	takes	you	20	seconds	to	search	the	stack	of	photos	in	the	worst	case	using	
our	search	algorithm.	Suppose	someone	gives	you	12	times	as	many	photographs,	also	
ordered	from	earliest	year	to	latest	year.	In	this	case,	approximately	how	long	would	it	
take	to	search	for	a	specific	photo	in	the	worst	case	using	our	search	algorithm,	expressed	
in	minutes?	

	
	

	

	

	 Page	3	

	
	

c. In	order	to	use	your	new	function	from	(a),	you	should	probably	have	a	method	that	
allows	you	to	check	to	make	sure	that	the	list	is	sorted	in	increasing	order	before	you	use	
the	search	method.	Complete	the	Python	function	is_sorted(datalist)	below	that	
returns	the	boolean	True	if	a	given	list	is	sorted	in	increasing	order	or	boolean	False	if	
it	is	not.	

	
Your	function	will	be	similar	to	the	search	function	on	the	previous	page,	except	you	don't	
need	a	key	to	search	for.	For	each	index	in	the	loop,	if	datalist[index]	is	not	less	than	or	
equal	to	datalist[index+1],	you	know	immediately	that	the	list	is	not	sorted	in	increasing	
order,	so	you	can	exit.	(What	do	you	return?)	If	it	is	less	than	or	equal,	then	repeat	with	
the	next	index.	If	you	get	through	the	entire	list,	then	the	loop	will	finish	and	you	know	
the	list	is	sorted	in	increasing	order.	(What	do	you	return	in	this	case?)	
	

	
	
	
	
	
	
	
	
	
	
	
	

d. We	replace	the	for	loop	above	with	the	iterator	version	that	does	not	specify	the	range:	
	

for element in datalist:

 if element > element+1:

 etc.	

	
This	does	not	function	correctly.	Why?	

def is_sorted(datalist):

 for index in range(__________, ____________________):

 if datalist[index] > datalist[index+1]:

 return ________________

 return _______________

	

	 Page	4	

2. (2	pts)	If	a	list	is	sorted	in	increasing	order,	we	can	search	the	list	using	another	algorithm	
called	Binary	Search.	The	basic	idea	is	to	find	the	middle	element,	then	if	that	is	not	the	key,	
you	search	either	the	first	half	of	the	list	or	the	second	half	of	the	list,	depending	on	the	half	
that	could	contain	the	key.	The	process	is	repeated	iteratively	until	we	either	find	the	key	or	
we	run	out	of	elements	to	examine.	Here	is	an	implementation	of	Binary	Search	in	Python:		

def bsearch(datalist, key):
 lo_index = -1
 hi_index = len(datalist)
 while lo_index + 1 != hi_index:
 mid = (lo_index+hi_index)//2
 if datalist[mid] == key:
 return mid
 if key > datalist[mid]:
 lo_index = mid
 else:
 hi_index = mid
 return None

	
Let		datalist =

[5, 12, 14, 19, 23, 27, 33, 39, 45, 56, 61, 70, 79, 81, 98].

a. Trace	the	function	above	for	the	function	call	bsearch(datalist, 81),	where	the	
key	is	81,	showing	the	values	of	lo_index and	hi_index after	each	iteration	of	
the	while	loop	is	completed.	Also,	write	down	the	value	returned	by	the	function.	We	
have	started	the	trace	with	the	initial	values	of	lo_index	and	hi_index.	

	

	

	

	

b. Trace	the	function	above	for	the	function	call	bsearch(datalist, 13), where	the	
key	is	13,	and	write	down	the	value	returned	by	the	function.	

	

	

	

	

	
lo_index -1 | returns:

hi_index 15 | ________

	
lo_index -1 | returns:

hi_index 15 | ________

	 Page	5	

3. (2	pts)	Using	the	binary	search	function	from	the	previous	problem,	answer	the	following	
questions	clearly	and	concisely.	
	
a. If	the	list	has	an	even	number	of	elements,	how	does	the	function	determine	the	location	

of	the	"middle	element"?	Give	an	example	to	illustrate	your	answer.	

	

	

	

	

b. If	the	list	has	7	elements,	what	is	the	maximum	number	of	elements	that	will	be	examined	
in	binary	search?	
	
	
	
	
	
If	the	list	has	15	elements	(approximately	twice	as	many	elements	as	before),	what	is	the	
maximum	number	of	elements	that	will	be	examined	in	binary	search?	

	
	
	
	

If	the	list	has	31	elements	(approximately	twice	as	many	elements	again),	what	is	the	
maximum	number	of	elements	that	will	be	examined	in	binary	search?	

	
	
	
	
If	the	list	has	2n	–	1	elements,	for	n	>	0,	what	is	the	maximum	number	of	elements	that	
will	be	examined	in	binary	search	as	a	function	of	n?	(Look	for	a	pattern	above.)	
	

	
	
	
	

	

	

	

	

	

	 Page	6	

4.	(3	pts)	In	class,	we	developed	an	"in	place"	version	of	Insertion	Sort.	For	each	element	at	index	i,	
what	we	did	was	remove	that	element,	then	search	from	the	beginning	of	the	list	L	up	to	position	i		
for	the	location	of	the	first	value	that	was	greater	than	the	removed	element.	We	then	inserted	the	
removed	element	back	into	the	list	at	that	location.	

Here	is	another	version	of	Insertion	Sort.	In	this	version,	for	each	element	at	index	i,	we	copy	(not	
remove)	the	element	into	x.	Now,	we	search	backwards	from	position	i-1	for	the	first	value	that	is	less	
than	or	equal	to	x.	As	we	do	this,	we	copy	each	value	we	look	at	over	one	position.	Once	we	find	the	
location	of	the	first	value	that	is	less	than	or	equal	to	x,	we	copy	x	into	the	position	after	that	location.	

For	example,	suppose	i	is	6	and	we	have	the	following	so	far	in	our	list	L	(note	that	L[0..6),		
shown	in	red,	is	sorted	already):	

L = [14, 26, 30, 53, 76, 91, 68, 42]

i = 6

We	copy	68	into	x.			(x = 68) We	don't	remove	it.	

Now	we	look	at	91	at	index	5.	Since	91	is	not	less	than	or	equal	to	x,	we	copy	91	over	one	position:	

L = [14, 26, 30, 53, 76, 91, 91, 42]

i = 6

Now	we	look	at	76	at	index	4.	Since	76	is	not	less	than	or	equal	to	x,	we	copy	76	over	one	position:	

L = [14, 26, 30, 53, 76, 76, 91, 42]

i = 6

Now	we	look	at	53	at	index	3.	Since	53	is	less	than	or	equal	to	x,	we	have	found	our	insert	point	(i.e.	
after	53,	at	index	3+1=4),	so	we	copy	x	into	position	4	and	add	1	to	i:	

L = [14, 26, 30, 53, 68, 76, 91, 42]

i = 7

Note	that	L[0..7)	is	now	sorted	(shown	in	red).	This	process	is	repeated	for	each	index	i	=	1,2,…	

Before	we	implement	this	version,	we	should	note	that	there	is	a	special	case	to	consider!	As	we	
search	backward	from	position	i-1	for	the	first	element	that	is	less	than	or	equal	to	x,	all	of	these	
values	could	be	greater	than	x.	For	example,	if	we	try	to	insert	x=14	into	L[0..4)	below:	

L = [26, 30, 53, 76, 14, 91, 68, 42]

i = 4

In	this	case,	as	we	search	backward,	we	will	fall	off	the	list,	which	means	we	copy	x	into	index	0.	

	 Page	7	

(a)	Complete	this	new	version	of	Insertion	Sort	below.	Note	that	if	you	complete	this	correctly,	it	will	
handle	the	special	case	as	well.	

REMEMBER:	You	can	enter	this	into	a	file	and	run	it	in	python3	to	try	out	your	solution!	

(b)	In	class,	we	saw	that	Insertion	Sort	is	O(n2)	in	the	worst	case.	This	means	that	the	amount	of	
work	our	computation	does	is	proportional	to	the	square	of	the	amount	of	data	(n).		

def isort(datalist):

 i = 1

 while i < len(datalist):

 # copy the element at index i into x:

 __

 # j keeps track of each position as we search backward:

 j = i - 1

 # while j is valid and the element at index j is greater than x:

 while ___________________ and datalist[j] > x:

 # copy the element at index j into index j+1:

 # step j backwards:

 j = j – 1

 # we found the insert position (j+1), so copy x there

 i = i + 1

 return datalist

	

If	we	double	the	amount	of	data,	this	algorithm	will	run	approximately	_________	times	longer.	
	
If	we	triple	the	amount	of	data,	this	algorithm	will	run	approximately	_________	times	longer.	

