
15-110:	Principles	of	Computing,	Spring	2018

Problem	Set	3	(PS3)	
Due:	Friday,	February	9	by	2:30PM	on	Gradescope

HANDIN	INSTRUCTIONS	

Download	a	copy	of	this	PDF	file.	You	have	two	ways	to	fill	in	your	answers:	

1. Just	edit	(preferred)	-	Use	any	PDF	editor	(e.g.,	Preview	on	Mac,	iAnnotate	on	mobile,
Acrobat	Pro	on	pretty	much	anything)	to	typeset	your	answers	in	the	given	spaces.	You	can
even	draw	pictures	or	take	a	picture	of	a	drawing	and	import	it	in	the	correct	place	in	the
document.	That's	it.		(Acrobat	Pro	is	available	on	all	cluster	machines.)

2. Print	and	Scan		-	Alternatively,	print	this	file,	write	your	answers	neatly	by	hand,	and	then
scan	it	into	a	PDF	file.	This	is	labor-intensive	and	must	be	done	by	the	deadline.

Once	you	have	prepared	your	submission,	submit	it	on	Gradescope.	A	link	to	Gradescope	is	
provided	in	our	course	website.	DO	NOT	SUBMIT	TO	AUTOLAB!	

Fill	in	your	answers	ONLY	in	the	spaces	provided.	Any	answers	entered	outside	of	the	spaces	
provided	may	not	be	graded.	Do	not	add	additional	pages.	We	will	only	score	answers	in	the	given	
answer	spaces	provided.	If	we	cannot	read	your	answer	or	it	contains	ambiguous	information,	you	
will	not	receive	credit	for	that	answer.	

Be	sure	to	enter	your	full	name	below	along	with	your	section	letter	(A,	B,	C,	etc.)	and	your	
Andrew	ID.	Submit	your	work	on	Gradescope	by	2:30PM	on	the	Friday	given	above.		

REMINDER:	Sharing	your	answers	with	another	student	who	is	completing	the	assignment,	even	in	
another	semester,	is	a	violation	of	the	academic	integrity	policies	of	this	course.	Please	keep	these	
answers	to	yourself.	

Name	(First	Last)	 ___	

Section					__________		 Andrew	ID	 ___________________________________	

1. (1	pt)	Assume	you	can	only	give	someone	a	sequence	of	instructions	from	the	following	set	of
two	instructions:

SQUARE(x,y,s):	 Draw	a	square	with	its	top-left	corner	at	(x	,	y)	with	a	side	length	of	s.

CIRCLE(x,y,r):		 Draw	a	circle	centered	at	(x	,	y)	with	a	radius	of	r.

Write	two algorithms	made	up	of	SQUARE	and/or	CIRCLE	instructions	to	draw	each	of	the	
following pictures,	substituting	in	appropriate	values	for	x,	y,	s	and	r	in	each	instruction.	Use	as
few instructions	as	possible	to	create	the	pictures.

Answer:	 Answer:	

0							1							2						3						4							5						6							7						8	

8	

7	

6	

5	

4	

3	

2	

1	

0	
	 0							1							2						3						4							5						6							7						8	

8	

7	

6	

5	

4	

3	

2	

1	

0	
	

2. (2	pts)	The	Least	Common	Multiple	(LCM)	of	two	numbers	x	and	y	is	the	smallest	positive	integer
that	is	a	multiple	of	both	x	and	y.	(You	use	this	when	trying	to	find	the	lowest	common
denominator	when	adding	fractions.)

(a) Consider	the	following	iterative	function	that	computes	the	LCM	of	integers	x	and	y,
for	x	>	0	and	y	>	0:	

def lcm(x,y):
 p = x * y
 while y != 0:

temp = y
y = x % y
x = temp
q = p / x

 return q

Show	how	this	function	
computes	lcm(60,105)	by	
completing	the	table	above	that	shows	the	values	of	each	variable	at	the	end	of	each	iteration	of	
the	loop.	We	have	started	the	table	for	you	with	the	initial	values	of	the	variables	before	the	first	
iteration	of	the	loop.	You	may	not	need to use	all	of	the	rows	of	the	table.	

(b) Consider	the	following	recursive	function	that	computes	the	LCM	of	x	and	y,	where	x	<	y	and
z	is	a	multiple	of	y	(and	z	is	the	variable	that	will	eventually	hold	the	answer):

def lcm2(x, y, z):
 z = z + y

 if z % x == 0:
return z

 else:
return lcm2(x, y, z)

To	compute	the	LCM	of	60	and	105,	we	call	lcm2(60,105,0).	Show	how	lcm2(60,105,0)	
is	computed	recursively	here	by	listing	the	chain	of	recursive	calls	that	are	made	until	an	answer	
is	found.	We	have	started	the	chain	for	you	below.	

Answer:	

X y temp p q

60	 105	 ---	 6300	 ---	

Answer:	 lcm2(60, 105, 0)

à lcm2(60, 105, 105)

à

3. (2	pts)	Consider	the	following	algorithm	to	compute	the	sum	of	the	integers	stored	in	a	list
named	numlist:

1. Set	total	equal	to	0.
2. Set	i	equal	to	0.
3. While	i	is	less	than	the	length	of	numlist,	do	the	following:

a. Add	numlist[i]	to	total.
b. Add	1	to	i.

4. Return	total.

(a) Complete	the	function	below	that	implements	the	algorithm	above	in	Python	using
a	while	loop.

(b) Write	a	new	version	of	the	function	that	uses	a	for	loop	instead	and	does	not	use	list	indices
(i.e.	numlist[i]	is	not	allowed).

Answer:	 def compute_sum(numlist):	

Answer:	 def compute_sum2(numlist):	

4. (3	pts)	Recall	the	implementation	of	the	Sieve	of	Eratosthenes	that	we	discussed	in	class:

 1 def sift(numlist,k):
 2 # remove all multiples of k from numlist
 3 index = 0
 4 while index < len(numlist):
 5 if numlist[index] % k == 0:
 6 numlist.remove(numlist[index])
 7 else:
 8 index = index + 1
 9 return numlist
10
11 def sieve(n):
12 numlist = []
13 for i in range(2,n+1):
14 numlist.append(i)
15 primelist = []
16 while len(numlist) > 0:
17 primelist.append(numlist[0])
18 lastprime = primelist[len(primelist)-1]
19 numlist = sift(numlist, lastprime)
20 return primelist

(a) To	return	how	many	primes	are	less	than	or	equal	to	n,	what	single	line	needs	to	be	changed
above,	and	what	do	you	change	it	to?	(You	can	test	your	answer	in	python3.)

(b) To	return	the	largest	prime	less	than	or	equal	to	n,	what	single	line	needs	to	be	changed	above,
and	what	do	you	change	it	to?	(You	can	test	your	answer	in	python3.)

(c) Suppose	we	write	the	sift	function	with	the	following	shorter	one	that	use	an	iterator:

def bad_sift(numlist,k):
 # bad sift: tries to remove all multiples of k from numlist

 for value in numlist:
if value % k == 0:

numlist.remove(value)
return numlist

See	what	happens	in	python3	when	you	try	to	remove	all	multiples	of	2	from	the	list		
[2, 4, 6, 8, 10, 12, 14, 16].	What	result	do	you	get	and	why	does	this	happen?	

Answer:	

Answer:	

(d) A	modification	we	can	make	to	the	original	sieve	function	is	to	remove	multiples	of	2,	3,	...,	up	to
the	square	root	of	n.	For	example,	if	we	want	the	primes	up	to	and	including	25,	we	can	stop	the
loop	after	we	remove	the	multiples	of	5,	since	sqrt(25)	is	5.	At	this	point,	the	rest	should	be	prime.	A
revised	implementation	of	sieve	is	given	below	(assuming	we	import math).

11 def sieve(n):
12 numlist = []
13 for i in range(2,n+1):
14 numlist.append(i)
15 primelist = []
16 while numlist[0] <= math.sqrt(n):
17 primelist.append(numlist[0])
18 lastprime = primelist[len(primelist)-1]
19 numlist = sift(numlist, lastprime)
20 return primelist

Example	for	n = 25	(and	math.sqrt(n) = 5):	
numlist primelist
[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25] []
[3,5,7,9,11,13,15,17,19,21,23,25] [2]
[5,7,11,13,17,19,23,25] [2,3]
[7,11,13,17,19,23] [2,3,5]

Making	the	change	on	line	16	requires	another	change	in	the	function.	Identify	which	additional	line	
must	change	and	what	it	must	change	to	so	that	the	returned	list	has	all	of	the	primes	up	to	n	in	
increasing	order.	

Answer	(for	part	c):	

Answer:	

5. (2	pts)	OPEN	LEARNING	INITIATIVE	(OLI)	MODULE	–	ONLINE	ACTIVITY

To	help	you	review	iteration,	conditionals	and	lists,	there	is a	module	in	the	OLI	system	that	
discusses	the	key	ideas	along	with	exercises	interspersed	in	the	readings	to	see	if	you	understand	
the	core	topics.		

Go	to	the	OLI	system	through	our	Canvas	portal.	

Read	and	complete	the	following	lessons	in		
OLI	Module	5:	Putting	Iterations	and	Decisions	Together	:	

Euclid's	GCD	Algorithm	(page	32)	

Linear	Search	(page	33)	

Keeping	state	during	search	(page	34)	

Accumulating	outputs	(page	35)	

Note	that	these	will	not	take	you	a	few	minutes.	Expect	to	take	several	hours	to	do	these	lessons	
since	there	are	exercises	to	do	as	you	read	along.	Do	not	worry	if	you	get	the	exercises	right	or	
wrong.	The	goal	here	is	to	complete	them	to	the	best	of	your	ability	so	we	can	get	a	sense	of	where	
the	class	is	still	having	trouble	as	a	group.	

To	get	full	credit	(2	pts),	you	must	complete	all	four	tasks	to	the	best	of	your	ability.	Again,	we	will	
not	score	your	answers,	just	your	participation.	You	will	get	partial	credit	(1/2	pt	each)	for	each	
lesson	you	complete.	

OPTIONAL:	
Write	down	one	concept	you	learned	through	the	OLI	module	that	you	didn't	know	before.	

