
	 Page	1	

15-110:	Principles	of	Computing,	Spring	2018	
	

Programming	Assignment	9	
Due:	Tuesday,	April	10	by	9PM	

	
IMPORTANT	ANNOUNCEMENT	

You	cannot	drop	this	assignment	even	if	it	is	your	lowest	PA	score.	
Failure	to	submit	this	assignment	on	time	will	result	in	a	0	which	will	be	included	in	your	PA	total.	
We	only	drop	the	lowest	PA	score	from	PA1-PA8.	Please	submit	whatever	you	can	before	the	

deadline,	even	if	it	is	not	completely	done.	
	

Note:	You	are	responsible	for	protecting	your	solutions	to	the	following	problems	from	being	seen	by	
other	students	both	physically	(e.g.,	by	looking	over	your	shoulder	or	verbal	discussion)	and	electronically.	
In	particular,	since	the	lab	machines	use	the	Andrew	File	System	(AFS)	to	share	files	worldwide,	you	need	
to	be	careful	that	you	do	not	put	files	in	a	place	that	is	publicly	accessible.	
	
If	you	are	doing	the	assignment	on	the	Gates-Hillman	Cluster	machines	we	use	in	the	lab	or	on	
unix.andrew.cmu.edu,	please	remember	to	have	your	solutions	inside	a	private	folder	(which	
is	under	your	home	directory).	Our	recommendation	is	that	you	create	a	pa9	folder	under	
~/private/15110	for	this	assignment.	That	is,	the	new	directory	pa9	is	inside	the	directory	named	
15110,	which	is	inside	the	private	directory.	
	
Setup	
	

For	this	assignment,	you	will	create	a	Python	file	for	each	of	the	problems	below.	You	should	save	all	of	
these	files	in	a	folder	named	pa9.	Once	you	have	every	file,	you	should	zip	up	the	pa9	folder	and	
submit	the	zipped	file	on	Autolab.	
	
This	assignment	will	help	you	put	the	principles	you	learned	in	class	to	creating	a	new	simulation.		
NOTE:	If	you	use	your	own	laptop	and	have	Python	3	installed,	you	should	have	the	tkinter	module	
available.	See	a	TA	if	you	wish	to	install	Python	3	on	your	laptop.	If	you	ssh	into	the	Andrew	servers,	
tkinter	is	now	available	to	import,	but	you	need	to	use	the	–X	option	when	connecting.	
	
	 	

	 Page	2	

Overview	
	
	

In	this	assignment,	you	will	develop	a	simple	graphical	simulation	that	simulates	a	collection	of	cells	
that	live	and	die	on	a	microscope	slide.	The	cells	are	arranged	in	a	grid	of	size	30	(rows)	X	40	(columns)	
on	canvas	of	size	1000	pixels	X	750	pixels.	Each	cell	will	be	displayed	by	a	circle	that	is	25	pixels	wide	by	
25	pixels	high.	Cells	that	are	alive	are	colored	yellow;	cells	that	are	dead	are	colored	black.	Here	is	a	
sample	grid	of	cells:	
	

	
	
The	simulation	you	create	will	show	the	state	of	all	of	the	cells	from	one	second	to	the	next	as	a	series	
of	snapshots,	like	the	flu	virus	simulation	shown	in	class.	Each	second	is	known	as	a	"generation".	
	
Cells	live	and	die	using	the	following	rules:	
	

• If	a	live	cell	has	fewer	than	2	live	neighbors	in	the	current	generation,	the	cell	will	die	in	the	next	
generation	due	to	isolation.	

• If	a	live	cell	has	more	than	3	live	neighbors	in	the	current	generation,	the	cell	will	die	in	the	next	
generation	due	to	overpopulation.	

• If	a	dead	cell	has	3	live	neighbors	in	the	current	generation,	the	cell	will	become	alive	in	the	next	
generation	(birth).		

• If	none	of	these	conditions	above	apply,	then	the	cell	remains	in	its	current	state	in	the	next	
generation.	

	
A	neighbor	is	defined	as	a	cell	that	is	directly	adjacent	to	a	given	cell,	either	horizontally,	vertically	or	
diagonally.	Most	cells	will	have	8	neighbors,	but	some	cells	will	have	fewer.	

	 Page	3	

This	simulation	will	show	how	the	cell	population	evolves	over	time,	represented	by	a	matrix	of	30	X	40		
circles.	We	will	represent	the	cells	internally	as	a	list	of	lists	of	integers,	with	two	different	integers	used	
to	represent	the	states	of	alive	and	dead.	
	
Here	is	a	sample	of	what	the	first	three	simulated	seconds	might	look	like:	
				
	

				 	 		 	
		 Initial	state	 	 	 	 	 	 after	1	simulated	second	
	

				 	 		 	
		 after	2	simulated	seconds	 	 	 	 after	3	simulated	seconds	
	
	
Each	snapshot	above	is	a	time	step	of	the	simulation	shown	in	a	window	that	is	1000	pixels	wide	by	750	
pixels	high.	Each	circle	represents	one	cell.	
	
Complete	the	problems	below	to	build	this	cell	simulation	in	Python	3.	Refer	to	the	simulation	we	
covered	in	class	for	guidance	on	how	to	put	together	this	new	simulation.	Since	there	are	only	two	
states	for	the	cells,	do	NOT	use	any	global	constants	for	this	programming	assignment	like	we	did	for	
the	flu	virus	simulation.	
	
NOTE:	If	you	have	any	issues	with	colorblindness	or	sight	concerns,	please	contact	your	
instructor	for	accommodations.	 	

	 Page	4	

Problems	(PLEASE	NOTE	CORRECTION	IN	PROBLEM	1)	
	

1. (3	points)	Write	a	function	display(c, matrix)	in	the	file	display.py	where	the	
parameter	matrix	is	a	30	X	40	matrix	(i.e.	list	of	lists)	representing	a	culture	(collection)	of	1200	
cells	for	the	simulation.	Each	value	in	the	matrix	has	an	integer	in	the	range	0	through	1	(inclusive),	
which	encodes	a	cell's	state	as	follows:	

	
1 = alive (yellow) 0 = dead (black) <<< CORRECTED!

Your	function	should	go	through	the	entire	matrix	and	display	each	"cell"	on	the	canvas	c	as	a	circle	
in	the	proper	position	with	a	diameter	of	25	pixels	in	the	indicated	color	based	on	its	state.

General	algorithm:
I.	For	each	row	and	column	of	the	matrix,	do	the	following:

A.	Set	color	equal	to	the	corresponding	color	as	given	in	the	information	above	
	 depending	on	the	value	at	that	row	and	column	in	the	matrix.	
B.	Draw	a	circle	with	a	diameter	of	25	pixels	on	the	canvas	based	on	the	current	row	and		

column	with	a	fill	color	as	specified	above	and	an	explicit	outline	drawn	in	black.	
		 Notes:	

• Think	about	how	to	draw	a	circle	and	how	this	corresponds	to	the	given	diameter.	
• Be	sure	to	map	rows	and	columns	to	the	correct	dimension	in	the	window.	

	
Test	your	function	using	the	Python	function	test_display	(and	its	helper)	below	that	creates	a	
matrix	of	size	30	X	40	and	fills	each	cell	with	a	random	integer	between	0	and	1	inclusive.		

	
def create_matrix():
 matrix = []
 for i in range(0,30):
 row = []
 for j in range(0,40):
 row.append(randint(0,1))
 matrix.append(row)
 return matrix

def test_display():
 window = Tk()
 c = Canvas(window, width=1000, height=750)
 c.pack()
 seed(15110)
 matrix = create_matrix()
 display(c, matrix)
 c.update()
 window.mainloop() # wait until user clicks close button
 return matrix

	 Page	5	

Put	this	function	in	the	same	file	as	your	display	function.	Be	sure	to	import	the	necessary	
modules	for	your	code	to	run	correctly.		
	
For	this	problem,	we	have	a	random	seed	in	the	test_display	function.	This	means	that	the	
random	number	generator	always	start	at	the	same	place	in	its	sequence	every	time	you	run	the	
function.	So	you	should	get	the	same	test	display	every	time	(returned	matrix	not	shown):	
	
> python3 –i display.py
>>> test_display()	

	
	

2. (3	points)	Next,	you	will	write	some	support	functions	to	determine	if	a	cell	is	alive	or	dead	and	to	
count	the	number	of	live	neighbors	a	cell	has.		
	
a.	Write	a	function	alive(matrix, row, column)	in	the	file	tests.py	that	returns	True	
if	the	integer	at	the	given	row	and	column	in	the	matrix	represents	a	cell	that	is	alive,	False	
otherwise.		
	
Be	sure	to	test	your	function	in	the	Python	interpreter.	You	don't	have	to	test	this	function	with	a	
matrix	of	size	30	X	40.	You	can	test	it	with	a	much	smaller	matrix.	
	
Sample	usage:	
> python3 -i tests.py
>>> matrix = [[1, 1, 0, 1, 1], [0, 0, 1, 1, 1], [1, 0, 1, 0, 0]]
>>> alive(matrix, 2, 2)
True
>>> alive(matrix, 1, 0)
False

	 Page	6	

b.	Write	another	function	dead(matrix, row, column)	in	the	file	tests.py	that	returns	
True	if	the	integer	at	the	given	row	and	column	in	the	matrix	represents	a	cell	that	is	dead,	False	
otherwise.		
	
Be	sure	to	test	your	function	in	the	Python	interpreter.	You	don't	have	to	test	this	function	with	a	
matrix	of	size	30	X	40.	You	can	test	it	with	a	much	smaller	matrix.	
	
Sample	usage:	
> python3 -i tests.py
>>> matrix = [[1, 1, 0, 1, 1], [0, 0, 1, 1, 1], [1, 0, 1, 0, 0]]
>>> dead(matrix, 2, 2)
False
>>> dead(matrix, 1, 0)
True

c.	Write	a	function	neighbors(matrix, row, column)	in	the	file	tests.py	that	returns	
the	number	of	live	neighbors	for	the	cell	represented	in	the	matrix	at	the	given	row	and	column.	BE	
CAREFUL:	Not	all	cells	have	8	neighbors!	
	
General	algorithm:	Set	up	a	counter	initialized	to	0.	If	the	cell	is	not	along	the	left	edge	and	that	
neighbor	is	alive,	add	1	to	the	counter.	If	the	cell	is	not	along	the	top	edge	and	that	neighbor	is	alive,	
add	1	to	the	counter.	Continue	this	for	the	other	6	possible	neighboring	positions.	Then	return	the	
final	value	of	the	counter.	(You	can	make	use	of	the	function	alive	that	you	wrote	for	part	a.)	
	
Be	sure	to	test	your	function	in	the	Python	interpreter.	You	don't	have	to	test	this	function	with	a	
matrix	of	size	30	X	40.	You	can	test	it	with	a	much	smaller	matrix.	
	
Sample	usage:	
> python3 -i tests.py
>>> matrix = [[1, 1, 0, 1, 1], [0, 0, 1, 1, 1], [1, 0, 1, 0, 0]]
>>> neighbors(matrix, 1, 2)
4
>>> neighbors(matrix, 1, 1)
5
>>> neighbors(matrix, 1, 2)
4
>>> neighbors(matrix, 1, 3)
5
>>> neighbors(matrix, 0, 1)
2
>>> neighbors(matrix, 1, 0)
3
>>> neighbors(matrix, 1, 4)
3

>>> neighbors(matrix, 0, 0)
1
>>> neighbors(matrix, 0, 4)
3
>>> neighbors(matrix, 2, 0)
0
>>> neighbors(matrix, 2, 4)
2

	
	

	 Page	7	

3. (3	points)	Write	a	function	nextsecond(matrix)	in	the	file	simulation.py,	which	takes	a	
matrix	(i.e.	list	of	lists)	named	matrix,	representing	our	culture	of	cells	as	described	above	for	the	
current	time	step	of	the	simulation.	This	function	returns	a	new	matrix	(i.e.	list	of	lists)	of	the	same	
size	representing	our	culture	of	cells	during	the	next	time	step	of	the	simulation,	after	one	
simulated	second	has	passed.	
	
In	this	file,	you	will	need	copies	of	the	display,	alive,	dead	and	neighbors	functions	you	
wrote	from	the	previous	problems.	Be	sure	to	test	these	carefully	since	these	must	work	correctly	
for	the	next	steps	to	work	correctly.	
	
The	basic	idea	here	is	that	we	start	with	a	representation	of	the	current	culture	as	a	list	of	lists	
named	matrix	containing	integers	0	and	1	and	create	a	new	snapshot	of	the	culture	after	one	
time	step	in	a	new	list	of	lists	named	newmatrix.	Each	value	newmatrix[row][column]	
represents	the	updated	state	of	that	cell	in	the	culture	from	matrix[row][column].	Refer	to	
the	simulation	done	in	class.	This	function	will	be	very	similar	to	the	function	we	wrote	to	advance	
one	day	in	the	flu	virus	simulation.	
	
General	algorithm:	
	

I. Create	a	new	matrix	of	the	same	size	as	matrix,	with	each	value	initialized	to	0.	
II. For	each	row	and	column	of	the	matrix,	do	the	following:	

a. Compute	the	number	of	live	neighbors	of	the	given	cell.	(Use	your	function	from		
part	2	of	this	assignment!)	

b. Apply	the	rules	for	the	simulation	(see	page	2)	and	store	the	updated	state	of	this	
cell	in	the	new	matrix.	

III. Return	the	new	matrix	as	your	final	result	of	this	function.	
	

Test	your	nextsecond	function	using	the	following	function	run_simulation	(and	its	helper),	
which	creates	a	random	culture	of	cells	given	the	initial	seed	and	runs	the	simulation	for	the	given	
number	of	simulated	seconds.	Put	these	functions	in	the	same	file	simulation.py.	

	
def create_matrix():
 matrix = []
 for i in range(0,30):
 row = []
 for j in range(0,40):
 row.append(randint(0,1))
 matrix.append(row)
 return matrix

def run_simulation(init_seed, num_seconds):
 # create a canvas of size 1000 X 750
 window = Tk()
 c = Canvas(window, width=1000, height=750)
 c.pack() # continued on next page!

	 Page	8	

 seed(init_seed)
 matrix = create_matrix()
 display(c, matrix)
 c.update()
 sleep(2)
 for i in range(num_seconds):
 matrix = nextsecond(matrix)
 display(c, matrix)
 c.update()
 sleep(2)
 window.mainloop() # wait until user clicks close button
 return matrix

	
Sample	usage:	
> python3 -i simulation.py
>>> run_simulation(15110,50)
	
The	first	4	results	of	this	simulation	function	are	shown	in	the	beginning	of	this	document,	using	an	
initial	random	number	seed	of	15110	and	whatever	number	of	seconds	you	wish	to	simulate.	For	
example,	you	can	run	it	this	way:	run_simulation(15110,50)	to	use	an	initial	seed	for	the	
random	number	generator	of	15110	and	50	simulated	seconds.	(Returned	matrix	is	not	shown.)	
	
4.	(1	point)	Once	you	have	your	general	simulation	working,	we	want	you	to	see	what	happens	when	
the	percentage	of	initial	live	cells	varies.	Copy	all	of	your	code	in	simulation.py	into	
simulation2.py	and	remove	the	test_display	function	in	simulation2.py.	Be	sure	your	
previous	simulation	is	working	the	way	you	want,	since	any	changes	in	simulation2.py	will	not	be	
reflected	automatically	in	simulation.py.	
	
Update	the	create_matrix	function	in	simulation2.py	so	that	it	has	a	parameter	p	
representing	the	probability	that	any	cell	is	initially	alive	as	a	percentage	chance.	The	parameter	is	
assumed	to	be	an	integer	between	0	and	100	inclusive	(i.e.	0%	chance	up	to	100%	chance).	Change	the	
function	so	that	a	cell	is	alive	with	chance	p%.	HINT:	Use	randint	as	shown	in	class	to	do	this.	
	
Also	change	the	run_simulation	function	so	that	it	accepts	a	third	parameter	p	for	the	probability	
that	any	cell	is	alive.		Also,	change	the	call	to	create_matrix	so	that	p	is	sent	to	the	function:	

• def run_simulation(init_seed, num_seconds, p):
• matrix = create_matrix(p)

	
Now	run	the	simulation	again	to	test	your	work	with	percentage	chances	10,	40,	60,	and	90.		
	
Sample	usage:	
> python3 -i simulation2.py
>>> run_simulation(15110, 50, 10)
>>> run_simulation(15110, 50, 40) etc.

	 Page	9	

FOR	FUN	(NO	CREDIT):	
	
You	can	make	additional	simulations	that	start	with	other	matrices	that	are	not	random.	You	do	not	
need	to	hand	these	in,	but	you	can	try	them	out	if	you	have	the	time	or	the	curiosity!	Each	one	does	
something	very	interesting!	Simply	make	a	new	simulation	file	based	on	task	3	(no	probabilities)	and	
update	the	create_matrix	so	it	returns	one	of	these	two	initial	cultures,	as	a	list	of	lists,	of	course.	
	

	
	

	
	
Submission	
	

You	should	now	have	the	pa9	folder	that	contains	the	following	Python	files:	
	

display.py tests.py simulation.py simulation2.py	
	

You	may	have	additional	simulation	files	but	these	will	not	be	graded.	
Zip	up	the	folder	and	submit	the	zipped	file	named	as	pa9.zip	on	Autolab.	
Be	sure	to	check	your	submission	to	see	that	you	submitted	the	correct	code.	

