
	 Page	1	

15-110:	Principles	of	Computing,	Spring	2018	
	

Programming	Assignment	7	
Due:	Tuesday,	March	20	by	9PM	

	
	

	
Note:	You	are	responsible	for	protecting	your	solutions	to	the	following	problems	from	being	
seen	by	other	students	both	physically	(e.g.,	by	looking	over	your	shoulder	or	verbal	discussion)	
and	electronically.	In	particular,	since	the	lab	machines	use	the	Andrew	File	System	(AFS)	to	share	
files	worldwide,	you	need	to	be	careful	that	you	do	not	put	files	in	a	place	that	is	publicly	
accessible.	
	
If	you	are	doing	the	assignment	on	the	Gates-Hillman	Cluster	machines	we	use	in	the	lab	or	on	
unix.andrew.cmu.edu,	please	remember	to	have	your	solutions	inside	a	private	folder	
(which	is	under	your	home	directory).	Our	recommendation	is	that	you	create	a	pa7	folder	
under	~/private/15110	for	this	assignment.	That	is,	the	new	directory	pa7	is	inside	the	
directory	named	15110,	which	is	inside	the	private	directory.	
	
	
Overview	
	

For	this	assignment,	you	will	create	a	Python	file	for	each	of	the	problems	below.	You	should	
save	all	of	these	files	in	a	folder	named	pa7.	Once	you	have	every	file,	you	should	zip	up	the	
pa7	folder	and	submit	the	zipped	file	on	Autolab.	
	
This	assignment	will	help	you	explore	binary	and	hexadecimal	notations	and	how	characters	are	
stored	as	ASCII	codes.	In	addition	to	writing	the	code,	you	should	test	your	code	on	multiple	
inputs	to	check	its	correctness.	
	
	 	

	 Page	2	

Problems	
	

1.	[2	points]	An	unsigned	16-bit	binary	value	can	be	converted	to	an	integer	simply	by	creating	a	
variable	to	hold	the	total	(What	do	you	initialize	this	variable	to?)	and	examine	each	bit	one	at	a	
time	using	a	loop:	if	any	bit	is	1,	then	add	the	corresponding	power	of	2	to	the	total.		
	
For	this	problem,	let's	store	an	unsigned	16-bit	binary	value	as	a	string.	For	example,	the	16-bit	
unsigned	integer	0101100110100101	would	be	stored	in	a	string	as	'0101100110100101'.	
	
Be	careful!	In	our	binary	string,	the	indexing	increases	left	to	right	but	the	powers	of	2	increase	
right	to	left.	Here's	a	hint:	
	

if	bitstring[0]	is	'1',	then	you	add	215	to	the	total.	
if	bitstring[1]	is	'1',	then	you	add	214	to	the	total.	
if	bitstring[2]	is	'1',	then	you	add	213	to	the	total.	
etc.	
	

Do	you	see	the	pattern?	If	bitstring[i]	is	'1',	what	do	you	add	to	the	total	as	a	function	of	i?	
	
Write	a	function	unsigned_value(bitstring)	(in	unsigned_value.py)	which	takes	
a	string	named	bitstring	consisting	of	some	combination	of	sixteen	1s	and	0s	representing	
an	unsigned	16-bit	integer.	This	function	should	return	the	decimal	(base	10)	value	of	the	16-bit	
unsigned	integer.	Remember	to	use	a	loop.	Your	function	should	not	have	16	separate	tests.	
	
Example	usage:	
> python3 -i unsigned_value.py
>>> unsigned_value('0000000000000000')
0
>>> unsigned_value('0000000000000001')
1
>>> unsigned_value('0000000000000010')
2
>>> unsigned_value('1000000000000000')
32768
>>> unsigned_value('0000000000001111')
15
>>> unsigned_value('0000000011111111')
255
>>> unsigned_value('0000111111111111')
4095
>>> unsigned_value('1111111111111111')
65535

NOTE:	You	should	test	your	function	on	many	more	values	to	make	sure	it	works	correctly.	
Look	at	Piazza	soon	for	some	testing	hints!	
	

	 Page	3	

2.	[2	points]	Recall	that	a	signed	binary	integer	uses	the	leftmost	bit	as	its	sign.	If	the	sign	bit	is	0,	
the	number	is	considered	positive;	if	the	sign	bit	is	1,	the	number	is	considered	negative.	In	this	
problem,	we'd	like	to	write	a	Python	function	that	converts	an	8-bit	signed	negative	integer	to	
its	8-bit	positive	equivalent.	For	example,	if	we	start	with	the	8-bit	value	11001100	representing	
-52,	its	positive	equivalent	+52	is	00110100	(as	discussed	in	lecture).		
	
We	can	represent	8-bit	values	as	strings	of	1s	and	0s,	but	Python	does	not	allow	us	to	change	
individual	characters	of	a	string.	So	we	will	need	to	use	two	new	features.	One	converts	a	string	
to	a	list	of	characters	using	the	list	function:	

>>> my_string
'11001100'
>>> my_list = list(my_string)
>>> my_list
['1', '1', '0', '0', '1', '1', '0', '0']
	
To	convert	a	list	of	characters	back	to	a	string,	we	use	the	join	function	on	an	empty	string:	

>>> my_list
['1', '1', '0', '0', '1', '1', '0', '0']
>>> my_string = "".join(my_list)
>>> my_string
'11001100'

	
Write	a	function	to_positive(bytestring)	(in	to_positive.py)	that	takes	a	string	
named	bytestring	of	some	combination	of	eight	1's	and	0's	and	returns	a	string	
representing	the	positive	value	of	the	given	string.	If	the	given	string	represents	a	positive	
integer,	you	should	just	return	that	string	as	your	answer.	Otherwise,	follow	this	algorithm:	
	
1.	Convert	bytestring	to	a	list	named	bytelist.	
2.	For	each	character	in	bytelist,	if	it	is	a	'1',	change	it	to	a	'0';	otherwise,	change	it	to	a	'1'.	
3.	Set	i	equal	to	7.		
4.	While	the	i	th	character	in	bytelist	is	'1',	set	the	i	th	character	of	bytelist	to	'0'	and	decrease	i	by	1.	
5.	If	i	is	still	greater	than	0	after	step	4	is	completed,	set	the	i	th	character	of	bytelist	to	'1'.	
6.	Convert	bytelist	back	into	a	string	and	return	this	string	as	your	answer.	
	
Example	usage:	
> python3 -i to_positive.py
>>> to_positive('11001100')
'00110100'
>>> to_positive('11110000')
'00010000'
>>> to_positive('11111111')
'00000001'
>>> to_positive('01010101')
'01010101'

	 Page	4	

3.	[2	points]	This	problem	will	explore	hexadecimal	notation.	
	
Write	a	function	bin_to_hex(bitstring)	(in	bin_to_hex.py)	that	takes	a	string	
named	bitstring	containing	a	combination	of	sixteen	1s	and	0s.	It	returns	the	hexadecimal	
equivalent	of	the	binary	string.	
	
To	solve	this	problem,	you	will	need	two	lists	in	your	function.	One	list	will	have	all	of	the	4-bit	
binary	values	in	numerical	order:	
	
binlist = ['0000', '0001', '0010', … , '1110', '1111']
	
(You	can't	use	'…';	you	have	to	write	them	all	out!)	
	
The	other	list	will	have	all	of	the	single	digit	hex	values	in	numerical	order:	
	
hexlist = ['0', '1', '2', … , 'E', 'F']	
	
(Again	you	can't	use	'…';	you	have	to	write	them	all	out!)	
	
General	algorithm:	
1.	Set	result	equal	to	the	empty	string.	
2.	For	i	equal	to	0,	4,	8	and	12,	do	the	following:	
	 a.	Set	pattern	equal	to	the	4-bit	substring	of	bitstring	starting	at	index	i.	
	 b.	Set	j	equal	to	the	index	of	pattern	in	the	binlist.	(What	list	function	do	you	use	here?)	
	 c.	Set	result	equal	to	result	plus	the	j	th	string	in	hexlist.	
3.	Return	result	as	your	final	answer.	
	
String	reminder:	If	s	is	a	string,	then	s[a:b]	is	the	substring	of	s	starting	at	index	a	up	to	but	
not	including	index	b.	
	
Example	usage:	
> python3 -i bin_to_hex.py
>>> bin_to_hex('0000000100100011')
'0123'
>>> bin_to_hex('1111111011011100')
'FEDC'
>>> bin_to_hex('1000100110101011')
'89AB'
>>> bin_to_hex('0111010001010110')
'7456'
>>> bin_to_hex('1011111011101111')
'BEEF'

	
	 	

	 Page	5	

4.	[4	points]	Both	functions	for	this	part	deal	with	ASCII	values	for	characters.	
	
For	this	problem	you	will	take	a	letter	of	the	alphabet	and	change	it	to	the	letter	i	positions	
afterwards,	wrapping	around	back	to	A	if	necessary.	For	example,	if	the	letter	is	'A'	and	i	is	4,	
then	we	would	return	'E'.	If	the	letter	is	'X'	and	i	is	5,	then	we	would	return	'C'.	
	
Recall	that	characters	are	stored	in	the	computer	as	codes	(integers)	using	the	ASCII	standard.	
Luckily	the	letters	have	codes	that	are	in	the	same	sequence	as	the	letters.	For	example,	'A'	is	
65	in	ASCII,	'B'	is	66	in	ASCII,	'C'	is	67	in	ASCII,	etc.	We	can't	do	arithmetic	with	characters	in	
Python.	Instead,	we	must	get	the	character's	code	using	the	ord	function,	do	the	arithmetic,	
and	convert	the	result	back	to	a	character	using	the	chr	function.	
	
Examples:	
	
>>> ord('A')
65
>>> ord('Z')
90
>>> chr(65)
'A'
>>> chr(90)
'Z'
	
For	this	problem,	you	are	not	allowed	to	use	any	built-in	character	functions	other	than	ord	
and	chr.	Instead,	use	the	character	codes	and	numeric	operations.	
	
(a)	(2	points)	Write	a	function	forward(c, i)	in	forward.py	that	takes	an	upper-case	
character	stored	in	the	parameter	c	and	a	positive	integer	i	and	returns	the	upper-case	
character	that	is	i	positions	forward,	wrapping	around	to	the	start	of	the	alphabet	if	necessary.	
	
Example	usage:	
> python3 -i forward.py
>>> forward('A',1)
'B'
>>> forward('A',2)
'C'
>>> forward('C',5)
'H'
>>> forward('X',1)
'Y'
>>> forward('X',5)
'C'
>>> forward('M',26)
'M'
>>> forward('Q',51)
'P'

HINT:	
As	you	can	see,	i	could	be	larger	than	25.	
To	deal	with	this,	once	you	get	the	ASCII	
value	of	the	character,	shift	it	back	so	it	lies	
between	0	and	25,	inclusive.	Then	add	i	
and	deal	with	the	wraparound.	(Modulo	
might	be	helpful	here!)	Then	shift	back	so	
the	value	lies	between	65	and	90,	inclusive.	
Then	you	can	convert	back	to	a	character.	

	 Page	6	

(b)	(2	points)	Write	a	function	called	capitalize(s)	in		capitalize.py.	The	parameter	
is	a	string	s	containing	a	sequence	of	1	or	more	words	that	are	all	in	lowercase	with	one	space	
between	words.	The	function	returns	another	string	that	is	the	same	as	s	except	that	all	words	
are	capitalized.	To	capitalize	a	word	means	to	convert	its	first	letter	to	upper	case.	A	word	is	any	
sequence	of	letters	(not	including	spaces).		
	
General	algorithm:	Loop	over	each	character	of	the	string	s.	If	the	character	is	the	start	of	a	
word,	add	its	uppercase	equivalent	to	the	new	string.	Otherwise,	add	the	character	to	the	new	
string	as	is.	In	general,	a	character	is	at	the	start	of	a	word	if	the	previous	character	was	a	space.	
(There	is	a	special	case	here	you	should	figure	out.)	
	
ASCII	HINT:	The	difference	between	the	ASCII	code	for	an	uppercase	letter	and	its	
corresponding	lowercase	letters	is	32.	
	
Example	usage:	
> python3 -i capitalize.py
>>> capitalize('how now brown cow')
'How Now Brown Cow'
>>> capitalize('python is a snake')
'Python Is A Snake'
>>> capitalize('pittsburgh')
'Pittsburgh'
	
	
Submission	
	

You	should	now	have	the	pa7	folder	that	contains	the	following	Python	files:	
	

a. unsigned_value.py	
b. to_positive.py	
c. bin_to_hex.py	
d. forward.py	
e. capitalize.py	

	

Zip	up	the	folder	and	submit	the	zipped	file	named	as	pa7.zip	on	Autolab.	
Be	sure	to	check	your	submission	to	see	that	you	submitted	the	correct	code.	

