
	 Page	1	

15-110:	Principles	of	Computing,	Spring	2018	
	

Programming	Assignment	6	
Due:	Tuesday,	March	6	by	9PM	

	
	

Note:	You	are	responsible	for	protecting	your	solutions	to	the	following	problems	from	being	
seen	by	other	students	both	physically	(e.g.,	by	looking	over	your	shoulder	or	verbal	discussion)	
and	electronically.	In	particular,	since	the	lab	machines	use	the	Andrew	File	System	(AFS)	to	share	
files	worldwide,	you	need	to	be	careful	that	you	do	not	put	files	in	a	place	that	is	publicly	
accessible.	
	
If	you	are	doing	the	assignment	on	the	Gates-Hillman	Cluster	machines	we	use	in	the	lab	or	on	
unix.andrew.cmu.edu,	please	remember	to	have	your	solutions	inside	a	private	folder	
(which	is	under	your	home	directory).	Our	recommendation	is	that	you	create	a	pa6	folder	
under	~/private/15110	for	this	assignment.	That	is,	the	new	directory	pa6	is	inside	the	
directory	named	15110,	which	is	inside	the	private	directory.	
	
Overview	
	

For	this	assignment,	you	will	create	a	Python	file	for	each	of	the	problems	below.	You	should	
save	all	of	these	files	in	a	folder	named	pa6.	Once	you	have	every	file,	you	should	zip	up	the	
pa6	folder	and	submit	the	zipped	file	on	Autolab.	
	
This	assignment	will	help	you	understand	how	to	use	lists	to	represent	trees	and	graphs	to	hold	
data.	You	learn	how	to	write	the	corresponding	Python	code	to	specific	algorithms. In	addition	
to	writing	the	code,	you	should	test	your	code	on	multiple	inputs	to	check	its	correctness.	
	
	 	

	 Page	2	

Problems	
	

1. [3	points]	Recall	that,	one	way	to	represent	the	nodes	of	a	complete	binary	tree	is	with	a	
list,	where	the	first	element	contains	the	root,	the	next	two	elements	contain	the	next	
level	of	the	tree	(the	children	of	the	root),	the	next	four	elements	contain	the	next	level	of	
the	tree	(two	containing	the	children	of	the	root's	left	child	and	then	two	containing	the	
children	of	the	root's	right	child),	and	so	on,	depending	on	how	many	levels	the	tree	has.	

	
The	binary	tree	at	left	with	nodes	labeled	"a"	through	"o"		
would	be	represented	by	the	Python	list:	
	
[None,"a","b","c","d","e","f","g","h","i","j","k","l","m","n","o"]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
	

Note	in	this	representation,	we	do	not	use	index	0	of	the	list.	(This	will	be	helpful.)	
	

This	representation	of	a	tree	using	a	list	can	be	extended	to	incomplete	trees	by	
using	None	to	represent	the	"missing"	nodes	that	would	need	to	be	added	to	
make	a	complete	tree.	This	is	the	case	for	the	tree	to	the	left,	which	can	be	
represented	by	the	Python	list:	
	
[None,"a","b","c","d","e",None,"g","h","i",None,"k"] 	

	
Observe	that:	
• The	left	child	of	the	node	at	index	1	(labeled	"a")	is	the	node	at	2	(labeled	"b").	
• The	left	child	of	the	node	at	4	("d")	is	the	node	at	8	("h").	
• The	right	child	of	the	node	at	3	("c")	is	the	node	at	7	("g").	
• The	right	child	of	the	node	at	5	("e")	is	the	node	at	11	("k").	
• The	parent	of	the	nodes	at	4	("d")	and	at	5	("e")	is	at	2	("b").	
• The	parent	of	the	nodes	at	8	("h")	and	at	9	("i")	is	at	4	("d").	

	
Do	you	see	a	pattern?	There	are	simple	formulas	that	can	be	used	to	calculate	the	
indices	of	a	node's	left	child,	right	child,	and	parent	from	that	node's	index.	
	
(a) (1	pt)	Define	a	function	left(tree, index)	(in	tree_functions.py)	that	

requires	a	list	representing	a	binary	tree	and	the	index	of	one	of	its	nodes.	It	should	
return	(not	print)	the	data	of	that	node's	left	child.	If	there	is	no	left	child,	it	should	
return	None	instead.	You	may	assume	that	the	index	given	is	valid	for	the	given	tree.	
	

(b) (1	pt)	Define	a	function	right(tree, index)	(in	tree_functions.py)	that	
requires	a	list	representing	a	binary	tree	and	the	index	of	one	of	its	nodes.	It	should	
return	(not	print)	the	data	of	that	node's	right	child.	If	there	is	no	right	child,	it	
should	return	None	instead.	You	may	assume	that	the	index	given	is	valid	for	the	
given	tree.	
	

	 Page	3	

(c) (1	pt)	Define	a	function	parent(tree, index)	(in	tree_functions.py)	
that	requires	a	list	representing	a	binary	tree	and	the	index	of	one	of	its	nodes.	It	
should	return	(not	print)	the	data	of	that	node's	parent.	If	there	is	no	parent,	it	
should	return	None	instead.	You	may	assume	that	the	index	given	is	valid	for	the	
given	tree.	

	
Example	usage:		(Note:	All	three	functions	must	compile	correctly	for	Autolab	to	test.)	

python3 -i tree_functions.py
>>> tree = [None,"a","b","c","d","e",None,"g","h","i",None,"k"]
>>> left(tree, 4)
'h'
>>> right(tree, 1)
'c'
>>> parent(tree, 8)
'd'
>>> parent(tree, 9)
'd'
>>> left(tree, 5)
>>> right(tree, 7)
>>> parent(tree, 1)
>>>

2. [2	points]	In	a	Binary	Search	Tree,	each	node	has	a	value	that	is	greater	than	that	of	all	
of	the	nodes	reachable	through	its	left	child	and	that	is	less	than	that	of	all	of	the	nodes	
reachable	through	its	right	child.	(We	will	assume	that	the	tree	does	not	hold	two	nodes	
with	the	same	value.)	A	Binary	Search	Tree	can	be	stored	using	a	list	just	as	we	did	in	the	
previous	problem.	
	
The	following	is	an	iterative	algorithm	for	searching	a	list	called	bst	encoding	a	binary	
search	tree	to	determine	whether	it	contains	a	node	with	the	value	key.	

I. Set	index	to	the	index	of	the	root	node	of	the	tree	stored	in	the	list	bst.	
II. While	index	is	valid	and	the	value	of	the	node	at	index	is	not	None,	do	the	

following:	
A. Set	value	to	the	value	of	the	node	at	index	in	bst.	
B. Return	True	if	value	is	equal	to	key.	
C. Set	index	to	the	index	of	the	left	child	of	the	node	at	index	if	key	is	less	

than	value.	
D. Set	index	to	the	index	of	the	right	child	of	the	node	at	index	if	key	is	

greater	than	value.	
III. Return	False.	

HINT:	For	this	algorithm	the	index	is	valid	if	is	less	than	the	length	of	the	bst	list.	

	 Page	4	

Define	a	function	bst_search(bst,key)	(in	bst_search.py)	that	uses	this	
algorithm	to	determine	whether	the	value	key	occurs	in	bst,	the	list	representing	a	
binary	search	tree.	

Example	usage: 	
	
> python3 -i bst_search.py
>>> bst = [None, 84, 41, 96, 25, 50, None, 98]
>>> bst_search(bst, 50)
True
>>> bst_search(bst, 51)
False
>>> bst_search(bst, 41)
True
>>> bst_search(bst, 90)
False

3. [2	points]	We	can	also	search	a	binary	search	tree	recursively.	Here	is	a	recursive	algo-
rithm	to	perform	the	same	search	as	in	problem	2	starting	at	a	given	index	in	the	tree.	

I. If	index	is	not	valid,	return	False.	
II. Set	value	to	the	value	of	the	node	at	index	in	bst.	
III. If	value	is	None,	return	False.	
IV. If	key	is	equal	to	value,	return	True.	
V. If	key	is	less	than	value,	return	the	result	of	this	function	on	the	index	of	the	left	

child	of	the	node	at	index.	Otherwise,	return	the	result	of	this	function	on	the	
index	of	the	right	child	of	the	node	at	index.	(Use	recursion	here.	You	will	return	
the	results	of	a	call	to	bst_search2	with	the	same	bst	and	key	but	with	a	
new	index:		e.g.	return bst_search2(bst, key, ?????))	

Define	a	function	bst_search2(bst,key,index)	(in	bst_search2.py)	that	
uses	this	recursive	algorithm	to	determine	whether	the	value	key	occurs	in	bst,	the	list	
representing	a	binary	search	tree,	starting	from	the	given	index.	When	you	test	this	
function,	you	will	always	use	an	index	of	1	in	the	initial	function	call,	as	shown	below. 	

> python3 -i bst_search2.py
>>> bst = [None, 84, 41, 96, 25, 50, None, 98]
>>> bst_search2(bst, 50, 1)
True
>>> bst_search2(bst, 51, 1)
False
>>> bst_search2(bst, 41, 1)
True
>>> bst_search2(bst, 90, 1)
False

	 Page	5	

4.	[3	points]	In	a	social	network,	each	node	represents	a	person	and	two	nodes	are	directly	
connected	if	the	two	people	are	friends.	One	thing	to	measure	for	a	person	is	the	cluster	
coefficient,	which	measures	how	connected	the	person's	friends	are	with	each	other.	If	a	
person's	friends	are	all	directly	connected	to	each	other,	then	the	person's	cluster	coefficient	is	
1.0.	If	the	person's	friends	are	not	directly	connected	to	each	other	at	all,	then	the	person's	
cluster	coefficient	is	0.0.		
	
Consider	the	following	graphs	representing	small	social	networks.	In	each	graph,	the	person	
we're	analyzing	is	in	blue,	and	the	friends	of	this	person	are	in	red.	

	
Graph	1:	 	 	 Graph	2:	 	 	 Graph	3:	
	
	
	
	
	
	
	
	

In	graph	1,	person	1	has	three	friends	(0,	2,	and	3)	who	all	are	connected	with	each	other.	This	
is	the	strongest	network	of	friends	and	the	cluster	coefficient	is	1.0.		
In	graph	2,	person	1	has	three	friends	(0,	2,	and	3),	but	only	2	and	3	are	friends	with	each	other.	
This	is	a	weaker	network	of	friends	and	the	cluster	coefficient	is	0.33333.	
In	graph	3,	person	1	has	three	friends	(0,	2	and	3),	but	none	of	these	friends	are	friends	with	
each	other.	This	is	the	weakest	network	of	friends,	and	the	cluster	coefficient	is	0.0.	

	
Here	is	another	example	of	a	social	network,	with	6	people,	and	we're	analyzing	person	2.	
Person	2	has	four	friends	(0,	1,	3	and	4).	Person	2	and	person	5	are	not	friends,	so	5	is	shown	in	
white.	

	
	 	 	 	 	 	 Graph	4:	

	
In	graph	4,	person	2	is	directly	connected	to	four		
friends	(in	red).	Of	these	four	friends,	there	are	3		
connections	(0	with	1,	0	with	3,	and	1	with	4).		
Four	people	can	have	at	most	6	connections,		
so	the	cluster	coefficient	for	person	2	is	3	/	6	=	0.5.	

	
	
We	can	represent	each	graph	as	a	list	of	lists	as	described	in	class,	where	the	cost	to	go	
between	two	directly	connected	nodes	is	1,	the	cost	from	a	node	to	itself	is	0,	and	the	cost	
between	two	nodes	that	are	not	directly	connected	is	infinity,	i.e.	float("inf").	
	
	

1	

0	

3	

2	 1	

0	

3	

2	 1	

0	

3	

2	

2	

0	

5	

4	

1	

3	

	 Page	6	

(a)	In	the	file	cluster.py,	write	four	functions	create_graph1(),	create_graph2(),	
create_graph3()	and	create_graph4()	that	return	each	graph	above	as	a	list	of	lists,	
using	the	value	float("inf")	for	infinity.	Do	not	use	the	string	"inf"	by	itself.		The	colors	
don't	mean	anything	for	this	problem;	they're	just	for	you	to	see	what	a	cluster	is.	

	
Sample	usage:	

	
python3 -i cluster.py
>>> graph1 = create_graph1()
>>> graph1
[[0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]]
>>> graph2 = create_graph2()
>>> graph2
[[0, 1, inf, inf], [1, 0, 1, 1], [inf, 1, 0, 1], [inf, 1, 1, 0]]
>>> graph3 = create_graph3()
>>> graph3
[[0, 1, inf, inf], [1, 0, 1, 1], [inf, 1, 0, inf], [inf, 1, inf, 0]]
>>> graph4 = create_graph4()
>>> graph4
[[0, 1, 1, 1, inf, inf], [1, 0, 1, inf, 1, inf], [1, 1, 0, 1, 1, inf],
[1, inf, 1, 0, inf, 1], [inf, 1, 1, inf, 0, 1], [inf, inf, inf, 1, 1, 0]]
>>>

(b)	The	following	algorithm	computes	the	cluster	coefficient	for	a	graph	G	for	a	given	node	n.	

	
I. Set	numnodes	equal	to	the	number	of	nodes	in	the	graph	G.	
II. Set	neighborhood	equal	to	the	empty	list.	
III. For	i	in	the	range	0	to	numnodes−1	inclusive,	do	the	following:	

A. If	node	n	is	directly	connected	to	i	in	the	graph	G,		
append	i	to	the	neighborhood	list.	

IV. Set	numlinks	equal	to	0.	
V. For	each	j	in	the	neighborhood	list,	do	the	following:	

A. For	each	k	in	the	neighborhood	list,	do	the	following:	
1. If	j	is	not	equal	to	k,	and	if	j	and	k	are	directly	connected	in	graph	G,	

add	1	to	numlinks.	
VI. Set	m	equal	to	the	length	of	the	neighborhood	list.	
VII. Set	maxlinks	equal	to	m	times	m-1.	
VIII. Return	numlinks	divided	by	maxlinks.	(Use	regular	division.)	

	
	
HINTS:	

• If	node	a	is	directly	connected	to	node	b	in	the	graph	G,	then	G[a][b]	is	equal	to	1.	
	

• To	compute	the	number	of	nodes	in	the	graph,	remember	that	it	is	a	list,	so	
compute	its	length.	

	

	 Page	7	

	
First,	test	to	make	sure	your	functions	from	part	(a)	work	correctly!	Then	in	the	same	file	
cluster.py,	write	another	function	cluster_coeff(G, n)	that	computes	and	returns	
the	cluster	coefficient	for	node	n	in	graph	G	using	the	algorithm	above.	You	may	assume	that	n	
is	a	valid	node	number	and	that	G	is	a	list	of	lists	representing	a	graph	as	defined	above.	

	
Example	usage:	
	
python3 -i cluster.py
>>> graph1 = create_graph1()
>>> graph2 = create_graph2()
>>> graph3 = create_graph3()
>>> graph4 = create_graph4()
>>> cluster_coeff(graph1, 1)
1.0
>>> cluster_coeff(graph2, 1)
0.3333333333333333
>>> cluster_coeff(graph3, 1)
0.0
>>> cluster_coeff(graph4, 2)
0.5

	
Submission	
	

You	should	now	have	the	pa6	folder	that	contains	the	following	four	Python	files:	
	

a. tree_functions.py	
b. bst_search.py	
c. bst_search2.py	
d. cluster.py	

	

Zip	up	the	folder	and	submit	the	zipped	file	named	as	pa6.zip	on	Autolab.	Be	sure	to	check	
your	submission	to	see	that	you	submitted	the	correct	code.	
	
	

