
	 Page	1	

15-110:	Principles	of	Computing,	Spring	2018	
	

Programming	Assignment	5	
Due:	Tuesday,	February	27	by	9PM	

	
	

Note:	You	are	responsible	for	protecting	your	solutions	to	the	following	problems	from	being	
seen	by	other	students	both	physically	(e.g.,	by	looking	over	your	shoulder	or	verbal	discussion)	
and	electronically.	In	particular,	since	the	lab	machines	use	the	Andrew	File	System	(AFS)	to	share	
files	worldwide,	you	need	to	be	careful	that	you	do	not	put	files	in	a	place	that	is	publicly	
accessible.	
	
If	you	are	doing	the	assignment	on	the	Gates-Hillman	Cluster	machines	we	use	in	the	lab	or	on	
unix.andrew.cmu.edu,	please	remember	to	have	your	solutions	inside	a	private	folder	
(which	is	under	your	home	directory).	Our	recommendation	is	that	you	create	a	pa5	folder	under	
~/private/15110	for	this	assignment.	That	is,	the	new	directory	pa5	is	inside	the	directory	
named	15110,	which	is	inside	the	private	directory.	
	
Overview	
	

For	this	assignment,	you	will	create	a	Python	file	for	each	of	the	problems	below.	You	should	save	
all	of	these	files	in	a	folder	named	pa5.	Once	you	have	every	file,	you	should	zip	up	the	pa5	
folder	and	submit	the	zipped	file	on	Autolab.	
	
This	assignment	will	make	you	practice	with	recursion	and	make	you	learn	how	to	write	the	
corresponding	Python	code	to	a	given	algorithm.	You	will	also	experiment	with	stacks	and	
implement	a	simple	RPN	(Reverse	Polish	Notation)	calculator.
	
	
	
Problems	
	

1. [2	points]	Computing	a	2n	recursively.	
	
Recall	that	n!	(n	factorial)	is	defined	recursively	as	follows	for	non-negative	integer	n:	
	
n!	=	n	×	(n-1)!		for	n	>	0	 and				 n!	=	1	for	n	=	0	
	
Now	consider	computing	2n	recursively,	n	≥	0.	
	
2n	=	2	×	2n-1						for	n	>	0											and							2n	=	1	for	n	=	0.	
	

	 Page	2	

In	the	file	pow2.py,	write	a	recursive	function	pow2(n)	for	n	≥	0	that	computes	2n	for	
any	integer	n	greater	than	or	equal	to	0.	IMPORTANT:	You	may	NOT	use	the	**	operator	
or	the	math.pow	function,	you	may	not	use	a	list	holding	powers	of	2,	and	you	may	not	
use	a	loop.	This	function	should	be	recursive,	so	your	pow2	function	should	have	a	call	
to	pow2	inside	of	it.	
	
Hint:	Your	function	will	look	very	similar	to	the	factorial	function	discussed	in	class!	
	
Example	usage:	
	
>> python3 -i pow2.py
>>> pow2(0)
1
>>> pow2(4)
16
>>> pow2(6)
64
>>> pow2(7)
128
>>> pow2(10)
1024
>>> pow2(20)
1048576

2. [2	points]	Printing	select	strings	from	a	list	
	
In	show_strings.py,	define	a	Python	function	show_strings(stringlist)	
that	takes	a	list	of	strings	called	stringlist	and	prints	out	each	string	that	has	at	least	5	
characters.	Use	the	following	recursive	algorithm:	
	

1. Return	None	if	stringlist	is	empty.	
2. Print	the	first	string	in	stringlist	if	that	first	string	has	at	least	5	characters.	
3. Using	a	recursive	call,	show	the	strings	that	have	at	least	5	characters	in	the	rest	

of	stringlist.	(See	List	Hint	below.)	
	
String	Hint:	Just	like	lists,	strings	have	a	len	function.	
	
List	Hint:	The	rest	of	the	list	is	the	list	containing	everything	except	the	first	element	of	the	
original	list,	in	the	same	order.	
	
	

	 Page	3	

Example	usage:	[PRINT	STRINGS	ONE	PER	LINE]	
	
python3 -i show_strings.py
>>> cars = ["buick", "gmc", "chevrolet", "cadillac", "ford",
"bmw", "kia", "lincoln"]
>>> show_strings(cars)
buick
chevrolet
cadillac
lincoln
>>> airports = ["jfk", "lga", "ewr", "isp"]
>>> show_strings(airports) # no output for this one
>>> teams = ["penguins", "steelers", "pirates"]
>>> show_strings(teams)
penguins
steelers
pirates

	
	

3. 	[2	points]	Towers	of	Hanoi	Revisited	
	

Recall	the	solution	to	the	Towers	of	Hanoi	problem	given	in	class,	which	prints	out	all	of	
the	instructions	for	the	required	moves	for	a	given	number	of	discs,	n.	

We	can	write	a	function	that	computes	the	total	number	of	moves	made	in	the	problem,	
recursively.	Complete	the	following	function,	so	that	it	returns	the	total	number	of	moves	
made.	Assume	that	n	is	always	greater	than	or	equal	to	0.	Store	your	function	
in	towers.py.	Your	solution	must	be	recursive.	Do	not	use	exponentiation	(**	or	
math.pow).		

def towers(n):
returns the total number of moves required for
Towers of Hanoi with n discs, n >= 0
 if n == 0:
 return ______________________
 else:
 # THINK RECURSIVELY!
 # task 1: move n-1 discs from starting peg to extra peg
 nummoves1 = ____________________________
 # task 2: move 1 disc from starting peg to ending peg

 nummoves2 = ____________________________
 # task 3: move n-1 discs from extra peg to ending peg
 nummoves3 = ____________________________
 totalmoves = nummoves1 + nummoves2 + nummoves3
 return totalmoves

	
	

	 Page	4	

Example	Usage:	
	

>> python3 -i towers.py
>>> towers(0)
0
>>> towers(1)
1
>>> towers(4)
15
>>> towers(5)
31
>>> towers(15)
32767

	
4. [2	points]	Reversing	lists	

	
In	reverse.py,	you	will	write	a	Python	function	reverse(datalist)	that	takes	a	
list	datalist	as	its	parameter	and	returns	a	list	with	the	same	data	in	reverse	order.		
	
Write	reverse(datalist)	as	a	recursive	function.	Use	this	algorithm:	
	
I. If	datalist	is	empty,	then	return	the	appropriate	result.	

(If	a	list	is	empty,	what	is	its	reverse?)	
II. Otherwise,	do	the	following:	

A. Store	the	first	element	from	datalist	in	temp	and	then	remove	it	from	
datalist.	

B. Initialize	newlist	to	be	the	reversal	of	the	current	datalist	using	recursion.	
(Hint:	this	means	you	need	to	call	this	same	reverse	function	on	this	
step.)	

C. Append	on	to	newlist	the	original	first	element	from	temp.	
D. Return	newlist	as	the	resulting	reversed	list.	

	
Do	not	use	a	built-in	reverse	function	for	lists.	You	should	implement	the	algorithm	as	
specified	above.	
	
Example	Usage:	
	
>> python3 -i reverse.py
>>> reverse([])	
[]
>>> reverse([1,2,3,4,5])
[5, 4, 3, 2, 1]
>>> reverse([15, 110])
[110, 15]
>>> reverse([2, 3, 5, 8, 13, 21, 34, 55])
[55, 34, 21, 13, 8, 5, 3, 2]

	 Page	5	

5. [2	points]	RPN	(Reverse	Polish	Notation)	Calculator	
	
In	Python,	you	can	test	whether	a	value	is	an	integer	(int)	using	
the		isinstance	function.	Here's	an	example:	
	
>>> a = 4
>>> b = "+"
>>> isinstance(a, int)
True
>>> isinstance(b, int)
False

	
In	this	problem,	we	will	implement	the	algorithm	for	an	RPN	Calculator	that	was	given	in	
class.	This	algorithm	is	NOT	recursive.	The	algorithm	starts	with	a	list	that	contains	a	valid	
RPN	expression	consisting	of	integers	and	operators	(+,	-,	*,	/).	For	example:	
	
[23, 3, "-", 4, 6, "+", "/"]
	
To	compute	its	value,	follow	this	algorithm	for	the	valid	RPN	expression:	
	
I. Set	stack	equal	to	the	empty	list.	
II. For	each	element	x	in	expression,	do	the	following:	

A. If	x	is	an	integer,	then	push	(append)	x	on	to	the	stack.	
B. Otherwise	it	must	be	an	operator,	so	do	the	following:	

1. Pop	the	last	element	from	stack	and	store	it	in	b.	
2. Pop	the	last	element	from	stack	and	store	it	in	a.	
3. If	x	is	"+",	push	(append)	a+b	on	to	the	stack.	
4. If	x	is	"-",	push	(append)	a-b	on	to	the	stack.	
5. If	x	is	"*",	push	(append)	a*b	on	to	the	stack.	
6. If	x	is	"/",	push	(append)	a//b	on	to	the	stack.	(use	integer	division).	

III. Once	all	of	the	elements	of	the	expression	are	processed,	there	should	be	one	
value	left	in	the	stack,	so	pop	it	and	return	it	as	the	final	answer.	

	
In	rpn.py,	write	a	function	rpn(expression)	that	returns	the	integer	value	of	the	
valid	RPN	expression,	represented	as	a	list	of	integers	and	operators.		

	
Example	Usage:	

	
python3 -i rpn.py
>>> expression1 = [23, 3, "-", 4, 6, "+", "/"]
>>> rpn(expression1)
2
>>> expression2 = [3, 4, "+", 5, "*"]
>>> rpn(expression2)
35

	 Page	6	

Submission	
	

You	should	now	have	the	pa5	folder	that	contains	the	following	five	Python	files:	
	

a. pow2.py	
b. show_strings.py	
c. towers.py	
d. reverse.py	
e. rpn.py	

	

Zip	up	the	folder	and	submit	the	zipped	file	named	as	pa5.zip	on	Autolab.	
Be	sure	to	check	your	submission	to	see	that	you	submitted	the	correct	code.	
	
NOTE:	Although	Autolab	will	score	your	results	based	on	the	output	your	functions	produce,	
your	TAs	will	review	your	code	to	make	sure	you	used	the	correct	algorithms	and	used	
recursion	correctly	and	may	deduct	points	if	you	do	not	follow	the	given	instructions.	

