
	 Page	1	

15-110:	Principles	of	Computing,	Spring	2018	
	

Programming	Assignment	4	
Due:	Tuesday,	February	13	by	9PM	

	
	

Note:	You	are	responsible	for	protecting	your	solutions	to	the	following	problems	from	being	
seen	by	other	students	both	physically	(e.g.,	by	looking	over	your	shoulder	or	verbal	discussion)	
and	electronically.	In	particular,	since	the	lab	machines	use	the	Andrew	File	System	(AFS)	to	
share	files	worldwide,	you	need	to	be	careful	that	you	do	not	put	files	in	a	place	that	is	publicly	
accessible.	
	
If	you	are	doing	the	assignment	on	the	Gates-Hillman	Cluster	machines	we	use	in	the	lab	or	on	
unix.andrew.cmu.edu,	please	remember	to	have	your	solutions	inside	a	private	folder	
(which	is	under	your	home	directory).	Our	recommendation	is	that	you	create	a	pa4	folder	
under	~/private/15110	for	this	assignment.	That	is,	the	new	directory	pa4	is	inside	the	
directory	named	15110,	which	is	inside	the	private	directory.	
	
Overview	
	

For	this	assignment,	you	will	create	a	Python	file	for	each	of	the	problems	below.	You	should	
save	all	of	these	files	in	a	folder	named	pa4.	Once	you	have	every	file,	you	should	zip	up	the	
pa4	folder	and	submit	the	zipped	file	on	Autolab.	
	
This	assignment	will	make	you	practice	the	iteration	and	make	you	learn	how	to	write	the	
corresponding	Python	code	to	a	given	algorithm. In	addition	to	writing	the	code,	you	should	
test	your	code	on	multiple	inputs,	for	which	you	independently	know	the	correct	output	(e.g.,	
by	plugging	the	inputs	into	a	calculator).		
	
	
	

IMPORTANT:	Set	Up	Instructions	for	PA4	
	
Before	you	start	these	problems,	make	sure	you	have	a	copy	
of	sieve.py	from	our	course	website	in	your	pa4	directory.	
	
	
	 	

	 Page	2	

Problems	
	

1. [3	points]	Prime	Factorization.	
	
Every	integer	greater	than	1	can	be	expressed	as	the	product	of	one	or	more	prime	
numbers	(which	may	be	repeated).	For	example,	60	=	2	×	2	×	3	×	5,	and	the	integers	2,	3,	
and	5	are	all	prime.	This	is	called	the	number's	prime	factorization,	and	it	is	unique	for	each	
integer	number	of	at	least	2.	
	
An	integer	n's	prime	factorization	(n	≥	2)	can	be	calculated	using	the	following	algorithm:		
	

1.	Set	dividend	equal	to	n.	
2.	Let	primelist	be	equal	a	list	of	all	primes	less	than	or	equal	to	n.	(Hint:	call	the	sieve		
		 function	and	store	what	it	returns	in	primelist.)	
3.	Set	possible_factor	to	the	first	element	of	primelist.	Then	remove	it	from	primelist.	
4.	Set	factors	to	be	an	empty	list.	
5.	While	dividend	is	not	1,	do	the	following:	

a.	If	possible_factor	is	a	divisor	of	dividend:	
i.	Append	possible_factor	onto	the	list	factors.	
ii.	Set	dividend	equal	to	dividend	divided	by	possible_factor		

		 	 (using	integer	division).	
b.	Otherwise,	(if	you	did	not	execute	the	substeps	i	and	ii,	above):	

i.	Set	possible_factor	to	the	first	element	of	primelist.		
		 	 Then	remove	it	from	primelist.	

6.	Return	the	list	factors	as	your	result.	
	

Implement	this	algorithm	as	a	Python	function	called	factor(n)	(stored	in	factor.py).	
Start	your	file	with	the	line:	
	
from sieve import sieve		
	
and	start	your	function	on	the	next	line.	This	import	line	will	give	you	access	to	the	sieve	
function	in	the	sieve.py	file.	You	can	now	call	the	sieve	function	as	if	it	were	in	your	
factor.py	file.	
	
Example	Usage:	
	

-bash-4.2$ python3 –i factor.py
>>> factor(60)
[2, 2, 3, 5]
>>> factor(45)
[3, 3, 5]
>>> factor(13)
[13]
>>> factor(15110)
[2, 5, 1511]

	 Page	3	

2. [2	points]	Harmonic	Mean	
	

The	harmonic	mean	provides	the	truest	average	in	certain	situations.	In	physics,	if	a	vehicle	
travels	at	60	miles/hour	for	some	distance	d	miles,	then	the	same	distance	at	40	miles/hour,	
and	then	the	same	distance	at	30	miles/hour,	then	its	average	speed	is	the	harmonic	mean	
which	is	40	miles/hour	which	is	the	speed	the	vehicle	could	travel	for	3d	miles	to	have	the	
same	travel	time.		

	
The	harmonic	mean	of	a	list	of	n	positive	numbers	x0,	x1,	...,	xn-1	is	equal	to		

𝑛
1
𝑥!
+ 1𝑥!

+⋯+ 1
𝑥!!!

	

	
In	the	file mean.py define	the	function		mean(numlist)that	takes	a	non-empty	list	
of	positive	numbers	called	numlist	and	returns	the	harmonic	mean	of	the	numbers	
in	numlist	accurate	to	3	decimal	places.	
	
Use	the	following	algorithm.	Think	about	what	division	you	should	use	in	this	algorithm.	

	
1.	Set	n	equal	to	the	length	of	the	number	list.	
2.	Set	sum	equal	to	0.	
3.	For	each	element	x	in	numlist,	do	the	following:	

a.	Add	1/x	to	sum	and	store	the	result	back	into	sum.	
4.	Set	result	equal	to	n	divided	by	sum.		
5.	Return	result	rounded	to	the	nearest	3	decimal	places.	
	

To	round	a	number,	use	the	round	function	which	requires	two	arguments:	the	number	
you	want	rounded,	and	an	integer	indicating	the	maximum	number	of	decimal	places	you	
want	the	number	rounded	to.	For	example:	
	
round(123.456789, 4) is 123.4568
round(123.456789, 10) is 123.456789
round(123.9999, 2) is 124.0

	
Example	Usage:	
	

-bash-4.2$ python3 –i mean.py
>>> mean([60, 40, 30])
40.0
>>> mean([110])
110.0
>>> mean([50, 30])
37.5
>>> mean([10, 20, 40, 80, 160])
25.806

	 Page	4	

3. [2	points]	Index	of	Minimum	Element	
	

In	min_index.py,	define	a	Python	function	min_index(datalist)	that	returns	
the	index	of	the	minimum	element	in	a	non-empty	datalist	of	elements.	If	the	minimum	
element	occurs	more	than	once	in	datalist,	your	function	should	return	the	index	of	the	
first	occurrence.	
	
Start	with	the	algorithm	presented	in	class	and	first	convert	it	to	find	the	minimum	
instead	of	the	maximum.	Then	make	an	adjustment	to	it	so	that	when	you	find	a	new	
minimum,	you	also	keep	track	of	its	location	or	index.	Then	once	the	entire	list	is	
examined,	you	return	the	index	of	the	minimum	instead	of	the	minimum	itself.	Be	sure	
to	test	your	function	carefully	on	a	wide	array	of	lists	of	various	sizes	(except	an	empty	
list).	Remember	that	lowercase	strings	are	compared	alphabetically.	
	
Example	Usage:	
	

-bash-4.2$ python3 –i min_index.py
>>> min_index([42, 15, 32, 78, 59, 29])
1
>>> min_index([30, 20, 10])
2
>>> min_index([99])
0
>>> min_index([10, 20, 30, 15, 25])
0
>>> min_index([60, 50, 40, 40, 40, 70])
2
>>> min_index(["homer", "marge", "bart", "lisa", "maggie"])
2
	

4. [3	points]	Bubble	Sort	
	

There	are	many	algorithms	for	sorting	the	elements	of	a	list.	One	of	these	is	Bubble	Sort.	
The	way	Bubble	Sort	works	is	that	it	scans	through	the	list	x0,	x1,	x2,	x3,	…,	xn-1,	comparing	
each	pair	of	adjacent	values	(x0	with	x1,	x1	with	x2,	x2	with	x3,	etc.).	For	each	pair	that	is	in	
the	wrong	order	(i.e.	xi	>	xi+1),	these	values	are	swapped.	As	a	result,	the	first	pass	through	
the	list	causes	the	largest	value	to	"bubble	up"	to	the	last	position	of	the	list.	This	process	is	
repeated	n-1	times	which	will	cause	the	list	to	be	sorted.	(Do	you	see	why?)	This	is	not	the	
most	efficient	implementation	of	Bubble	Sort,	but	we'll	start	with	this	for	now.	
	
(a)	(1	point)	In	the	file	swap.py,	write	a	function	swap(datalist, i, j)	that	has	
three	parameters:	a	data	list	and	two	indices	of	elements	in	the	list,	i	and	j.	The	function	
should	swap	the	data	in	positions	i	and	j	in	the	data	list.	Swapping	is	like	juggling.	When	you	
juggle,	you	toss	one	ball	up	into	the	air	(freeing	up	one	hand),	you	toss	the	other	ball	into	
your	free	hand,	and	then	you	catch	the	ball	in	the	air	with	your	other	hand	which	is	now	
free.	To	swap	two	values	stored	in	variables,	copy	the	first	value	into	a	temporary	variable,	

	 Page	5	

then	copy	the	second	value	into	the	first	variable,	then	copy	the	value	in	the	temporary	
variable	into	the	second	variable.	
	
Example	Usage:	
	
-bash-4.2$ python3 –i swap.py
>>> mylist = [10, 20, 30, 40, 50]
>>> swap(mylist, 1, 4)
>>> mylist
[10, 50, 30, 40, 20]

(b)	(2	points)	Now	we	will	implement	Bubble	Sort	which	will	use	the	swap	function	from	
part	(a).	In	the	file	sort.py	define	a	Python	function	bubble_sort(datalist)		
that	modifies	datalist	by	rearranging	its	elements	so	they	are	sorted	in	"ascending	order"	
(from	smallest	to	largest)	using	the	Bubble	Sort	algorithm	below.	Do	NOT	use	the	built-
in	sort	function.	Start	your	file	with	the	line:	
	
from swap import swap

and	then	write	the	definition	for	your	function	afterwards.	

	
1.	Set	n	equal	to	the	length	of	datalist.	
2.	Repeat	the	following	n-1	times:	

a.				For	index	in	the	range	from	0	to	n-2	inclusive,	do	the	following:	
i. Compare	datalist[index]	with	datalist[index+1].	If	they	are	not	in	the	

correct	order,	then	swap	them.	(Call	the	swap	function	you	wrote	
above.	What	arguments	do	you	use?)		

3. Return	datalist.	
	

Be	sure	to	test	your	function	on	more	than	just	the	one	case	shown	below.	
	
Example	Usage:	

	
-bash-4.2$ python3 –i sort.py
>>> mylist = [5, 2, 6, 3, 9, 1, 7, 8, 4]
>>> bubble_sort(mylist)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

	
Submission	
	

You	should	now	have	the	pa4	folder	that	contains	the	following	six	Python	files:	
 sieve.py, factor.py, mean.py, min_index.py, swap.py, sort.py	

Zip	up	the	folder	and	submit	the	zipped	file	named	as	pa4.zip	on	Autolab.	

