
	 Page	1	

15-110:	Principles	of	Computing,	Spring	2018	
	

Programming	Assignment	3	
Due:	Tuesday,	February	6	by	9PM	

	
	

Note:	You	are	responsible	for	protecting	your	solutions	to	the	following	problems	from	being	seen	by	
other	students	both	physically	(e.g.,	by	looking	over	your	shoulder	or	verbal	discussion)	and	
electronically.	In	particular,	since	the	lab	machines	use	the	Andrew	File	System	(AFS)	to	share	files	
worldwide,	you	need	to	be	careful	that	you	do	not	put	files	in	a	place	that	is	publicly	accessible.	
	
If	you	are	doing	the	assignment	on	the	Gates-Hillman	Cluster	machines	we	use	in	the	lab	or	on	
unix.andrew.cmu.edu,	please	remember	to	have	your	solutions	inside	a	private	folder	
(which	is	under	your	home	directory).	Our	recommendation	is	that	you	create	a	pa3	folder	under	
~/private/15110	for	this	assignment.	That	is,	the	new	directory	pa3	is	inside	the	directory	
named	15110,	which	is	inside	the	private	directory.	
	
	
Overview	
	

For	this	assignment,	you	will	create	a	Python	file	for	each	of	the	problems	below.	You	should	save	all	
of	these	files	in	a	folder	named	pa3.	Once	you	have	every	file,	you	should	zip	up	the	pa3	folder	and	
submit	the	zipped	file	on	Autolab.	
	
This	assignment	will	make	you	practice	the	control	structures	that	we	have	learned	so	far	(e.g.,	
conditionals,	for	loops,	and	while	loops)	and	make	you	learn	how	to	write	the	corresponding	Python	
code	to	a	given	algorithm. As	you	will	discover	this	semester,	computer	programs	are	rarely	correct	
whey	they	are	first	written.	They	often	have	bugs.	In	addition	to	writing	the	code,	you	should	test	your	
code	on	multiple	inputs,	for	which	you	independently	know	the	correct	output	(e.g.,	by	plugging	the	
inputs	into	a	calculator).	
	
	
	 	

	 Page	2	

Problems	
	

1. [1	point]	Four	numbers	𝑎,	𝑏,	𝑐,	and	𝑑	are	called	a	Pythagorean	quadruple	if	𝑎! + 𝑏! + 𝑐! = 𝑑!.	
For	example,	the	quadruple	(4,	13,	16,	and	21	is	a	Pythagorean	quadruple	since	4! + 13! +
16! = 21!.	In	a	file	named	quadruple.py,	write	a	Python	function	
quadruple(a, b, c, d)	that	takes	4	integers	as	parameters.	(Note	that	the	four	
parameters	represent	the	values	𝑎,	𝑏,	𝑐	and	𝑑	in	that	specific	order.)	Your	function	must	return	
True	if	the	arguments	form	a	Pythagorean	quadruple	and	False	otherwise.		
For	more	Pythagorean	quadruples	you	can	use	for	testing,	see	here:	
https://en.wikipedia.org/wiki/Pythagorean_quadruple 	

	
Example	Usage:	

	

-bash-4.2$ python3 –i quadruple.py
>>> quadruple(4, 13, 16, 21)
True
>>> quadruple(1, 2, 3, 4)
False
>>> quadruple(8, 4, 8, 12)
True
>>> quadruple(4, 8, 12, 8)
False	
	

2. [1	point]	In	a	file	named	smallest.py,	define	a	Python	function	smallest(x, y, z)		
that	requires	3	integer	parameters	and	returns	the	smallest	one	among	them.	You	may	assume	
that	the	function	will	always	be	called	with	three	integers	that	are	not	equal	to	one	another.	You	
may	NOT	use	the	built-in	function	min.		
	
Here	is	an	algorithm	to	follow:	
	

1	.	If	x	is	smaller	than	y,	then	y	can't	be	the	smallest,	so	do	the	following:	
	 a.	if	x	is	smaller	than	z,	then	x	is	the	smallest	so	set	result	equal	to	x.	
	 b.	otherwise,	z	is	the	smallest	so	set	result	equal	to	z.	
2.	Otherwise,	x	can't	be	the	smallest,	so	do	the	following:	
	 a.	if	y	is	smaller	than	z,	then	y	is	the	smallest	so	set	result	equal	to	y.	
	 b.	otherwise,	z	is	the	smallest	so	set	result	equal	to	z.	
3.	Return	result	as	the	final	answer.	

	
Example	Usage:	

	

-bash-4.2$ python3 –i smallest.py
>>> smallest(300, 200, 500)
200
>>> smallest(2357, 1589, 1156)
1156
	

	 Page	3	

3. [3	points]	The	Fibonacci	number	sequence	starts	with	0	and	1	as	its	first	two	numbers.	All	
subsequent	numbers	in	the	sequence	are	the	sum	of	the	previous	two	numbers.	Here	are	the	first	
15	numbers	in	the	Fibonacci	number	sequence:	

	
0,	1,	1,	2,	3,	5,	8,	13,	21,	34,	55,	89,	144,	233,	377	

	
(a)	In	the	file	fibonacci.py,	write	a	Python	function	nth_fib(n)	that	takes	one	positive	
integer	parameter	n	and	returns	the	nth	Fibonacci	number	in	the	sequence	using	this	algorithm:	
	
1.	If	n	is	1,	then	just	return	0.	
2.	If	n	is	2,	then	just	return	1.	
If	you	get	this	far,	then	n	is	not	1	or	2,	so	it	must	be	3	or	higher.		
So	follow	this	algorithm	to	complete	your	function:	
3.	Set	y	equal	to	0.	
4.	Set	z	equal	to	1.	
5.	Repeat	the	following	n-2	times:	
	 a.	Set	x	equal	to	y.	
	 b.	Set	y	equal	to	z.	
	 c.	Set	z	equal	to	the	sum	of	x	and	y.	
6.	Return	z.	

	
Example	Usage:	
	

-bash-4.2$ python3 -i fibonacci.py
>>> nth_fib(1)
0
>>> nth_fib(2)
1
>>> nth_fib(7)
8
>>> nth_fib(15)
377

(b)	In	the	same	file	fibonacci.py,	write	a	function	fib_finder(value)	that	has	one	
positive	integer	parameter	value	and	returns	the	first	Fibonacci	number	that	is	greater	than	
value.		You	will	use	the	algorithm	above	starting	at	step	3,	but	you	will	need	to	use	a	while	
loop	for	this	problem	since	you	won't	know	how	many	times	to	repeat	the	loop	above.	Think	
about	what	condition	you	need	for	the	while	loop	to	stop	at	the	right	time.	
	
-bash-4.2$ python3 -i fibonacci.py
>>> fib_finder(377)
610
>>> fib_finder(10000)
10946
>>> fib_finder(1000000)
1346269

	 Page	4	

4. [2	points]	By	printing	out	different	characters	at	different	locations,	it	is	possible	to	create	images.	
This	is	sometimes	called	as	ASCII	art,	and	it	works	best	in	Terminal	that	uses	a	fixed-width	font.	
Regular	shapes,	such	as	the	6	X	6	"square"	shown	below,	are	easy	to	create	algorithmically.	

	*	

 XXXXXX
 X X
 X X
 X X
 X X
 XXXXXX

	

Recall	that	you	can	print	a	single	X	without	moving	to	the	next	line	this	way:	
print("X", end="")	
You	can	just	move	to	next	line	without	printing	anything	this	way:	
print()

An	ASCII	square	can	be	created	using	the	following	algorithm,	which	requires	the	square’s	size	
(that	is,	the	number	of	X's	on	each	side).	You	may	assume	that	size	is	an	integer	that	is	greater	
than	or	equal	to	2:	
	

1. Print	size	X's	(i.e.	size	number	of	X’s)	using	a	loop,	then	move	to	next	line.	
2. Repeat	the	following	size-2	times:	

a. Print	one	X	and	stay	on	the	same	line.	
b. Print	size-2	spaces	on	the	same	line	using	a	loop.	
c. Print	one	X	and	move	to	next	line.	

3. Print	size	X's	(i.e.	size	number	of	X’s)	using	a	loop,	then	move	to	next	line.	
	

Note	that	when	side	=	2,	a	special	case	of	a	square	would	arise	where	step	2	would	be	skipped.	If	
you	code	this	correctly,	you	don't	need	additional	code	to	deal	with	this.	It	should	just	work	
correctly.			
	
Another	note:	If	you	look	carefully	at	the	algorithm,	step	2b	is	a	loop,	which	will	be	inside	of	a	loop.	
This	is	called	a	nested	loop.	Loops	can	be	inside	of	loops!	When	you	use	a	loop	inside	of	another	
loop,	make	sure	to	use	a	different	loop	variable	for	each	loop	(e.g.,	if	the	outer	loop	uses	i,	the	
inner	loop	can	use	j).	
	
In	a	file	named	make_square.py,	implement	the	algorithm	above	as	a	Python	function	
make_square(size).	Your	function	must	return	None	when	it	is	done.	

	
Example	Usage:		

	

-bash-4.2$ python3 –i make_square.py
>>> make_square(4)
XXXX	
X X
X X
XXXX	

	 Page	5	

5. [3	points]	Hourly	workers	typically	earn	overtime	when	they	work	more	than	40	hours	per	week.	
Suppose	that	overtime	is	twice	the	regular	pay	rate	for	the	additional	hours.	

	
In	a	file	names	wages.py,	define	a	Python	function	paytable(rate)	that	requires	rate	as	a	
parameter.	The	rate	is	the	hourly	pay	rate	of	the	employee	as	an	integer	(for	example,	12	means	
$12/hour).	Your	function	should	print	a	list	of	the	total	pay	if	the	employee	works	20,	25,	30,	35,	
40,	45,	50,	55	and	60	hours	as	shown	below.	You	may	assume	that	the	pay	rate	is	between	5	and	
124	inclusive.	Again,	your	function	must	return	None	when	it	is	done.		
	
You	will	get	up	to	2	points	if	your	table	prints	the	correct	values	(hours	and	corresponding	pay).	
You	will	get	the	additional	point	if	your	output	looks	exactly	as	shown	below	including	spacing.	
(HINT:	you	will	need	an	if	statement	to	determine	if	you	need	the	extra	space.)	As	you	work	on	
this	problem,	get	the	output	numbers	correct	first.	Then	try	to	get	the	spacing	if	you	can.	

	
Example	Usage:	

	

-bash-4.2$ python3 –i wages.py
>>> paytable(10)
20 hours: $ 200
25 hours: $ 250
30 hours: $ 300
35 hours: $ 350
40 hours: $ 400
45 hours: $ 500
50 hours: $ 600
55 hours: $ 700
60 hours: $ 800
>>> paytable(24)
20 hours: $ 480
25 hours: $ 600
30 hours: $ 720
35 hours: $ 840
40 hours: $ 960
45 hours: $1200
50 hours: $1440
55 hours: $1680
60 hours: $1920	

	
Submission	
	

You	should	now	have	the	pa3	folder	that	contains	the	following	five	Python	files:	
	

quadruple.py smallest.py	
fibonacci.py make_square.py	
wages.py	

	

Zip	up	the	folder	and	submit	the	zipped	file	named	as	pa3.zip	on	Autolab.	

