
	 Page	1		

15-110:	Principles	of	Computing,	Spring	2018	
	

Programming	Assignment	2	
Due:	Tuesday,	January	30	by	9PM	on	Autolab	

	
	

Note:	You	are	responsible	for	protecting	your	solutions	to	the	following	problems	from	being	
seen	by	other	students	both	physically	(e.g.,	by	looking	over	your	shoulder	or	verbal	discussion)	
and	electronically.	In	particular,	since	the	lab	machines	use	the	Andrew	File	System	(AFS)	to	
share	files	worldwide,	you	need	to	be	careful	that	you	do	not	put	files	in	a	place	that	is	publicly	
accessible.	
	
If	you	are	doing	the	assignment	on	the	Gates-Hillman	Cluster	machines	we	use	in	the	lab	or	on	
unix.andrew.cmu.edu,	please	remember	to	have	your	solutions	inside	a	private	folder	
(which	is	under	your	home	directory).	Our	recommendation	is	that	you	create	a	pa2	folder	
under	~/private/15110	for	this	assignment.	That	is,	the	new	directory	pa2	is	inside	the	
directory	named	15110,	which	is	inside	the	private	directory.	
	
	
Overview	
	

For	this	assignment,	you	will	create	a	Python	file	for	each	of	the	problems	below.	You	should	
save	all	of	these	files	in	a	folder	named	pa2.	Once	you	have	every	file,	you	should	zip	up	the	
pa2	folder	and	submit	the	zipped	file	on	Autolab.	
	
As	you	will	discover	this	semester,	computer	programs	are	rarely	correct	whey	they	are	first	
written.	They	often	have	bugs.	In	addition	to	writing	the	code,	you	should	test	your	code	on	
multiple	inputs,	for	which	you	independently	know	the	correct	output	(e.g.,	by	plugging	the	
inputs	into	a	calculator).		
	
	
Exercises	
	

After	creating	a	Python	file	with	the	provided	name,	you	will	write	a	Python	function	to	
calculate	each	formula	indicated	below.	The	calculations	should	be	performed	with	the	full	
precision	as	shown	in	the	examples;	you	do	not	have	to	round	off.	Note	that	due	to	floating	
point	precision	issues	(to	be	discussed	in	class),	your	answers	may	differ	slightly	with	the	
answers	shown	in	the	examples	below.	
	
	
	 	

	 Page	2		

1. [2	points]	You	want	to	determine	what	rate	of	return	(i.e.	annual	interest	rate)	you	need	
to	achieve	in	order	to	start	with	an	investment	𝑃	in	dollars	and	end	up	with	an	
investment	𝑄	in	dollars	after	𝑛	years.	To	compute	this,	you	need	to	use	the	following	
formula:	
	

𝑖 =
𝑄
𝑃

! !

− 1	

	
For	example,	if	you	had	$100	and	you	wanted	a	return	of	$200	in	5	years,	you	would	
need	an	annual	interest	rate	of	approximately	14.87%.	
	
In	rate.py,	define	a	Python	function	compute_rate(P,Q,n)	that	has	three	
parameters	representing	the	initial	investment	in	dollars	P,	the	desired	return	in	dollars	
Q,	and	the	number	of	investment	years,	n.	You	may	assume	that	P	is	always	less	than	or	
equal	to	Q	and	that	n	is	always	a	positive	integer.	Your	function	should	calculate	and	
return	the	interest	rate	needed	to	grow	the	investment	from	P	to	Q	over	n	years.	
	
Example	Usage:	
	

-bash-4.2$ python3 –i rate.py
>>> compute_rate(100, 200, 5)
0.1486983549970351
>>> compute_rate(15, 110, 10)
0.22047852624585262
>>> compute_rate(200, 300, 20)
0.02048015364945277

	

2. [3	points]	The	volume	𝑉	of	a	tetrahedron	with	edge		
length	𝑎	can	be	calculated	using	the	following	formula:		
	
	

𝑉 =
𝑎!

6 2
	

	

	
(i)	In		tetra.py,	define	a	Python	function	tetra_volume(edge_length)	that	
has	one	parameter	edge_length	representing	the	length	of	the	edge	of	the	
tetrahedron.	This	function	should	calculate	and	return	the	volume	of	a	tetrahedron	
whose	edge	length	is	edge_length.	
	
In	order	to	use	the	built-in	function	for	square	root,	you	must	place	the	following	line	at	
the	beginning	of	your	Python	file:	
	

import math

Then	you	may	use	math.sqrt	in	your	Python	code.	

Tetrahedron:	all	edges	
have	the	same	length	a	

	 Page	3		

	
Example	Usage:	
	

-bash-4.2$ python3 –i tetra.py
>>> tetra_volume(15)
397.74756441743295
>>> tetra_volume(110)
156859.8542932158
	
(ii)	Consider	the	set	of	tetrahedrons	below.	
	
							
	
	
	
	
	
	
	
	
In	the	same	file	tetra.py,	define	another	Python	function	print_volume()	with	
no	parameters	that	calls	the	function	tetra_volume	to	calculate	the	volume	of	each	
of	the	three	objects	above,	calculates	the	total	volume,	and	then	prints	this	value	in	a	
sentence.	This	function	should	return	None	after	printing	the	following	line	of	text:	
	

The total volume in cubic millimeters is XXX.XXXXXXXX
	

(XXX.XXXXXXXX	should	be	replaced	by	the	calculated	volume.)	
	
Your	print_volume()	function	must	call	the	tetra_volume	function	that	you	
wrote	in	part	(i),	instead	of	directly	calculating	the	volume	of	the	tetrahedron.	Each	time	
you	call	the	tetra_volume	function,	store	the	returned	answer	in	a	variable.	Once	
you	have	the	three	volumes	in	three	variables,	add	these	variables	together	and	store	
the	result	in	a	fourth	variable.	Then	print	the	sentence	using	the	fourth	variable	for	the	
final	volume.	CAREFUL:	The	objects	above	are	not	measured	in	the	same	units!	
	
Example	Usage:	
	

-bash-4.2$ python3 –i tetra.py
>>> print_volume()
The total volume in cubic millimeters is 1458.407736197254	
	
Note	that	Python	does	not	display	None	even	though	that	it	is	the	value	returned.	
Your	final	answer	should	be	very	close	to	the	example	above	but	might	be	off	by	a	little	
bit	due	to	floating	point	precision	issues.	

	
	 	

15mm	
10mm	

2cm	

	 Page	4		

3. [3	points]	In	music,	if	two	notes	are	separated	by	one	octave,	then	one	note	is	twice	the	
frequency	(pitch)	than	the	other.	Using	the	equal-tempered	system,	a	musical	octave	
can	be	divided	into	1200	"cents".	A	musical	note	that	is	x	cents	above	frequency	f	has	a	
frequency	of	f	*	2x/1200.		
	
The	frequency	of	"middle	C"	on	a	keyboard	is	261.6	Hertz	(Hz).	The	musical	C	one	octave	
above	middle	C	should	be	twice	the	frequency	or	523.2	Hertz	since	it	is	1200	cents	
above	middle	C	and	261.6	Hz	*	21200/1200	=	261.6	*	2	=	523.2	Hz.	

	
	

(i)	In	music.py,	define	a	Python	function	compute_freq(freq_in_Hz, cents)	
that	has	two	parameters	representing	an	initial	frequency	freq_in_Hz	in	Hertz	and	a	
number	of	cents.	This	function	calculates	and	returns	the	frequency	that	is	the	given	
number	of	cents	above	the	given	frequency.	
	
Example	Usage:	
	

-bash-4.2$ python3 –i music.py
>>> compute_freq(261.6, 1200)
523.2
>>> compute_freq(261.6, 100)
277.15554548439167	
	
(ii)	A	major	chord	is	made	up	of	a	root	note	and	two	notes	above	the	root,	all	played	
together.	Using	equal	tempered	tuning,	the	two	notes	above	the	root	in	a	major	chord	
are	at	400	cents	and	700	cents.		
	
In	the	same	file	music.py,	define	a	Python	function	major_chord(root_freq)	
that	has	one	parameter	representing	the	frequency	of	the	root	of	the	musical	chord.	
This	function	prints	the	frequency	(in	Hertz)	of	each	note	of	the	chord.	You	should	use	
the	compute_freq	function	you	defined	above	rather	than	compute	the	frequencies	
directly	each	time.	This	function	should	return	None	when	it	is	finished.	
	
Example	Usage:	
	

-bash-4.2$ python3 –i music.py
>>> major_chord(261.6)
261.6
329.59534665249885
391.95713131093993	
	
Again,	note	that	Python	does	not	display	None	even	though	that	it	is	the	value	returned,	
and	your	answers	may	differ	slightly	due	to	floating	point	precision	issues.	
	

	 	

	 Page	5		

4. [2	points]	Consider	a	12-hour	clock	that	has	an	hour	value	(between	1	and	12)	and	a	
minute	value	(between	0	and	59).	If	you	push	the	minute	button	m	times,	the	minutes	
increase	by	m,	wrapping	around	back	to	0	when	necessary.	Pushing	the	minute	button	
does	not	affect	the	hour	display.	For	example,	if	the	minutes	display	is	40	and	you	push	
the	minute	button	30	times,	the	minutes	display	will	show	10.	If	the	minutes	display	is	
30	and	you	push	the	minutes	button	110	times,	the	minutes	display	will	show	20.	
	
	

(i)	In	the	file	time.py,	write	a	Python	function	add_minutes(minute, m)	that	
has	two	parameters	representing	the	current	minute	on	display	and	m,	the	number	of	
times	the	minute	button	is	pushed.	You	may	assume	minute	is	an	integer	between	0	
and	59	inclusive	and	m	is	a	positive	integer.	This	function	calculates	and	returns	the	new	
value	of	the	minutes	on	display	after	the	minute	button	is	pushed	m	times.		
	
For	this	problem,	do	not	use	a	loop.	You	should	be	able	to	compute	the	value	to	return	
using	the	modulo	operator.		
	
Example	Usage:	
	

-bash-4.2$ python3 –i time.py
>>> add_minutes(20, 15)	
35
>>> add_minutes(40, 30)
10
>>> add_minutes(30, 110)
20	

	
(ii)	In	the	same	file	time.py,	write	a	Python	function	add_hours(hour, h)	that	
has	two	parameters	representing	the	current	hour	on	display	and	h,	the	number	of	
times	the	hour	button	is	pushed.	You	may	assume	hour	is	an	integer	between	1	and	12	
inclusive	and	h	is	a	positive	integer.	This	function	calculates	and	returns	the	new	value	
of	the	hours	on	display	after	the	hour	button	is	pushed	h	times.		
	
For	this	problem,	do	not	use	a	loop	or	an	if	statement.	You	should	be	able	to	compute	
the	value	to	return	using	the	modulo	operator,	although	this	one	is	a	little	trickier!	
	
Example	Usage:	
	

-bash-4.2$ python3 –i time.py
>>> add_hours(5, 2)
7
>>> add_hours(8, 7)
3
>>> add_hours(6, 6)
12
	
	

	 Page	6		

Submission	
	

You	should	now	have	the	pa2	folder	that	contains	the	following	4	Python	files:	
	

a. rate.py	
b. tetra.py	
c. music.py	
d. time.py	

	

Zip	up	the	folder	and	submit	the	zipped	file	named	as	pa2.zip	on	Autolab.	
	
NOTE:	Autolab	submission	will	not	open	until	Friday,	January	26.		

