
	 Page	1	

15-110:	Principles	of	Computing,	Spring	2018	
	

Programming	Assignment	11	(PA11)	
Due:	Tuesday,	May	1	by	9PM	

	
IMPORTANT	ANNOUNCEMENT	

You	cannot	drop	this	assignment	even	if	it	is	your	lowest	PA	score.	
Failure	to	submit	this	assignment	on	time	will	result	in	a	0	which	will	be	included	in	your	PA	total.	

We	only	drop	the	lowest	PA	score	from	PA1-PA8.	
	

Note:	You	are	responsible	for	protecting	your	solutions	to	the	following	problems	from	being	seen	by	
other	students	both	physically	(e.g.,	by	looking	over	your	shoulder	or	verbal	discussion)	and	
electronically.	In	particular,	since	the	lab	machines	use	the	Andrew	File	System	(AFS)	to	share	files	
worldwide,	you	need	to	be	careful	that	you	do	not	put	files	in	a	place	that	is	publicly	accessible.	
	
If	you	are	doing	the	assignment	on	the	Gates-Hillman	Cluster	machines	we	use	in	the	lab	or	on	
unix.andrew.cmu.edu,	please	remember	to	have	your	solutions	inside	a	private	folder	(which	
is	under	your	home	directory).	Our	recommendation	is	that	you	create	a	pa11	folder	under	
~/private/15110	for	this	assignment.	That	is,	the	new	directory	pa11	is	inside	the	directory	
named	15110,	which	is	inside	the	private	directory.	
	
Overview	
	

For	this	assignment,	you	will	create	a	short	program	that	illustrates	some	very	simple	"intelligence"	
using	the	notion	of	a	binary	tree	that	you	learned	earlier	this	semester.	In	this	assignment,	you	will	use	
a	new	feature	of	Python	that	we	haven't	used	before:	you	will	read	from	files	and	write	to	files.	You	
should	save	all	Python	files	in	a	folder	named	pa11.	Once	you	have	every	Python	file,	you	should	zip	
up	the	pa11	folder	and	submit	the	zipped	file	on	Autolab.	
	
Assignment	
	
For	this	assignment,	you	will	write	a	complete	program	that	plays	an	animal	guessing	game	between	
the	computer	and	a	human.	The	computer	first	reads	a	file	that	contains	its	current	"knowledge"	and	
builds	a	binary	tree	of	this	information.	Then,	the	human	thinks	of	an	animal,	and	the	computer	tries	to	
guess	the	animal	by	asking	yes/no	questions	and	moving	down	the	tree.		
	
Here	is	a	sample	text	file	and	its	corresponding	binary	tree:	
	
	
	
	 	

	 Page	2	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Note	that	some	lines	in	the	text	file	are	blank.	These	correspond	to	missing	nodes	in	the	binary	tree.	
Each	line	that	ends	with	a	question	mark	is	a	question.	Otherwise,	it	is	assumed	to	be	an	animal.	
	
Recall	that	a	binary	tree	can	be	stored	simply	in	Python	as	a	list.	The	binary	tree	above	would	be	stored	
as	follows	(not	all	None	values	are	shown):	
	
[15, 'Is it a mammal?', 'Is it kept as a pet?', 'Is it a kind of
bird?', 'hamster', 'Is it a farm animal?', 'owl', 'Does it live in
the ocean?', None, None, 'goat', 'elephant', None, None, 'crab',
'spider', None, None, None, None, None, None, None, None, None, None,
None, None, None, None, None, ..., None]
	
The	value	15,	stored	at	index	0,	indicates	the	index	of	the	last	non-None	entry	(i.e.	the	last	node).	

Is	it	a	mammal?	

Is	it	kept	as	a	pet?	 Is	it	a	kind	of	bird?	

hamster	 Is	it	a	farm	animal?	 owl	 Does	it	live	in	the	ocean?	

goat	 elephant	 crab	 spider	

yes	

yes	

yes	

yes	

yes	

no	

no	 no	

no	 no	

Is it a mammal?
Is it kept as a pet?
Is it a kind of bird?
hamster
Is it a farm animal?
owl
Does it live in the ocean?

goat
elephant

crab
spider
	

	 Page	3	

	
In	the	binary	tree,	the	computer	stores	questions	in	non-leaf	nodes,	and	answers	(i.e.	animals)	in	leaf	
nodes.	The	computer	starts	by	asking	the	question	in	the	root	node.	If	the	answer	from	the	human	is	
"yes",	then	the	computer	goes	down	the	left	branch;	otherwise	if	the	answer	is	"no",	it	goes	down	the	
right	branch.	If	the	new	node	it	arrives	at	contains	a	question,	it	asks	that,	again	branching	left	or	right.	
Eventually,	it	will	get	to	a	leaf.	At	this	point,	it	will	ask	"Is	it	a(n)	____?"	filling	in	the	blank	with	the	
animal	in	the	leaf	node.	If	the	human	says	"yes",	then	the	computer	wins	and	gloats.	If	the	human	says	
"no",	then	the	computer	asks	for	a	new	question	to	put	in	that	node,	and	moves	the	correct	answer	
and	the	wrong	answer	down	one	level	below	the	new	question.	For	example,	suppose	the	human	
thinks	of	the	animal	"dog".	The	dialog	will	look	something	like	this	(human	input	is	shown	in	red	italics):	
	
Let's play a guessing game. Answer yes or no only.
Is it a mammal?
yes or no? yes
Is it kept as a pet?
yes or no? yes
Is it a(n) hamster ?
yes or no? no
Ok, help me learn for next time.
What animal was it? dog
What question can I ask that will distinguish your animal from mine?
Does it bark?
Thank you.
	
Once	this	conversation	is	done,	the	computer's	binary	tree	should	be	updated	as	follows:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
You	will	build	this	program	step	by	step	until	you	have	a	complete	working	program.	Your	program	will	
read	in	the	data	from	the	input	file	to	build	the	initial	tree	of	knowledge.	It	will	then	play	the	game	and	
if	the	computer	guesses	wrong,	it	will	update	its	tree	based	on	the	user	input.	Once	the	game	is	done,	
we	will	be	able	to	save	the	tree	into	a	new	file	for	use	next	time	so	that	the	total	knowledge	is	not	lost.	

Is	it	a	mammal?	

Is	it	kept	as	a	pet?	 Is	it	a	kind	of	bird?	

Does	it	bark?	 Is	it	a	farm	animal?	 owl	 Does	it	live	in	the	ocean?	

goat	 elephant	 crab	 spider	

yes	

yes	

yes	

yes	

yes	

no	

no	 no	

no	 no	

dog	 hamster	

yes	 no	

	 Page	4	

Follow	the	instructions	carefully.	BE	SURE	TO	TYPE	CAREFULLY	SINCE	OUR	AUTOGRADER	WILL	DO	
EXACT	MATCHING	ON	LETTERS	AND	SPACING.	
	
1.		(1	pt)	Write	a	function	build_empty_tree()	in	the	file	animalgame.py	that	creates	and	
returns	a	list	representing	the	binary	tree	containing	64	entries,	all	set	to	None.	This	will	allow	us	to	
store	a	complete	binary	tree	with	6	levels	=	63	nodes.	(We	will	use	index	0	for	something	else.)	Test	
your	function	fully	and	submit	to	Autolab	to	check	that	you	get	maximum	credit	before	moving	on.	
	
Sample	usage:		
python3 –i animalgame.py
>>> t = build_empty_tree()
>>> t
[None, None, None, ..., None]
	
Once	you	have	this	completed,	copy	your	current	solution	into	animalgame_v1.py	in	the	pa11
folder	at	the	command	line	prompt	after	leaving	the	python3	interpreter.	Do	not	change	this	copy.	
	
cp animalgame.py animalgame_v1.py ß UPDATED	
	
2.	(1	pt)	Write	a	function	get_answer()	in	the	file	animalgame.py	that	prompts	the	user	for	an	
answer	of	"yes"	or	"no"	using	the	prompt	"yes or no? "	exactly	as	shown	(with	one	space	after	
the	question	mark).	If	the	answer	is	not	exactly	correct,	repeat	the	prompt	until	you	get	a	valid	answer.	
(HINT:	Use	a	while	loop.)	Return	the	answer	from	the	function	(do	not	print	it	out).	
	
Sample	usage	(user	input	shown	in	red	italics):	
python3 –i animalgame.py
>>> answer = get_answer()
yes or no? yes
>>> answer
'yes'
>>> answer = get_answer()
yes or no? no
>>> answer
'no'
>>> answer = get_answer()
yes or no? Yes
yes or no? NO!
yes or no? si
yes or no? yes
>>> answer
'yes'
	
Once	you	have	this	completed,	copy	your	current	solution	into	animalgame_v2.py	in	the	pa11
folder	at	the	command	line	prompt	after	leaving	the	python3	interpreter.	Do	not	change	this	copy.	
	
cp animalgame.py animalgame_v2.py ß UPDATED	

	 Page	5	

3.	(3	pts)	Download	the	file	startingtree.txt	from	the	course	website	into	your	pa11	folder.	If	
you	examine	the	file,	it	should	look	exactly	like	the	file	shown	on	page	2	of	this	handout.	
	
Write	a	function	initialize_tree(filename, tree)	in	the	file	animalgame.py	that	
requires	a	filename	of	a	file	that	stores	the	data	for	the	tree	and	the	list	representing	the	tree	which	
should	be	"empty"	(i.e.	64	None	values	from	step	1).	The	function	should	read	the	questions	and	
answers	from	the	data	file	and	return	the	complete	question/answer	tree	as	the	final	result.		
	
Algorithm:	Open	the	file	for	reading.	Set	a	counter	equal	to	1.	Then	for	each	string	in	the	file,	remove	
the	newline	character,	and	then	see	what	remains	(call	this	clean_string).	If	clean_string	is	empty,	then	
set	node	to	None.	Otherwise	set	node	to	the	string	clean_string.	After	you	set	node,	store	node	in	tree	
at	the	index	given	by	your	counter	and	then	update	the	counter	by	1.	Once	your	loop	ends	(i.e.	the	file	
is	completely	read),	store	the	index	of	the	last	used	node	in	position	0	of	the	tree	and	return	the	tree.		
	
Sample	usage	(assume	your	input	data	file	is	named	startingtree.txt):	
python3 –i animalgame.py
>>> t = build_empty_tree()
>>> t = initialize_tree("startingtree.txt", t)
>>> t
[15, 'Is it a mammal?', 'Is it kept as a pet?', 'Is it a kind of
bird?', 'hamster', 'Is it a farm animal?', 'owl', 'Does it live in
the ocean?', None, None, 'goat', 'elephant', None, None, 'crab',
'spider', None, None, None, None, None, None, None, None, None, None,
None, None, None, None, None, ..., None]
	
Once	you	have	this	completed,	copy	your	current	solution	into	animalgame_v3.py	in	the	pa11
folder	at	the	command	line	prompt	after	leaving	the	python3	interpreter.	Do	not	change	this	copy.	
	
cp animalgame.py animalgame_v3.py ß UPDATED	
	
	
	
	
4.	(2	pts)	Write	the	function	play_game(tree)	in	the	file	animalgame.py	that	plays	one	round	
of	the	game	as	described	earlier.	The	computer	starts	with	the	greeting,	exactly	as	shown:	
	
Let's play a guessing game. Answer yes or no only.
	
In	this	version,	the	computer	will	not	update	its	tree.	Instead	it	will	just	guess	an	animal	and	either	win	
or	lose.	This	version	will	help	make	sure	you	can	traverse	the	tree	correctly.	
	
Algorithm:	

1.	Print	the	greeting.	
2.	Set	treeindex	equal	to	the	index	of	the	root	of	the	tree.	(Where	is	the	root	stored?)	
3.	Set	done	equal	to	False.	

	 Page	6	

4.	While	done	is	not	True,	do	the	following:	
	 a.	Set	node	equal	to	tree[treeindex].	
	 b.	If	node	is	equal	to	None,	then	you	somehow	fell	off	the	tree,	so	print	an	error	
	 	 message	"NO	NODE!"	and	return	None.	(And	then	fix	your	code!)	
	 c.	Otherwise	if	node	represents	a	question,	then	do	the	following:	
	 	 i.	Print	node	(which	should	be	the	question).	
	 	 ii.	Use	the	get_answer	function	to	get	the	user's	yes/no	answer.	
	 	 iii.	If	the	user's	answer	is	yes,	then	set	treeindex	to	the	index	of	node's	left	child.	
	 	 iv.	Otherwise	set	treeindex	equal	to	the	index	of	node's	right	child.	
	 d.	Otherwise	(the	node	should	have	an	animal),	set	done	to	True.	
Once	step	4	ends,	treeindex	should	be	the	index	of	a	node	containing	the	name	of	an	
animal.	
5.	Print	"Is	it	a(n)"	followed	by	the	name	of	the	animal.	(You	should	save	this	animal	in	a	
variable	since	you	will	need	it	later	in	the	next	version.)	
6.	Use	the	get_answer	function	to	get	the	user's	yes/no	answer.	
7.	If	the	user	answers	yes,	then	print	"I	am	a	very	smart	computer."	
8.	Otherwise,	print	"Better	luck	next	time."	
9.	Return	None.	

	
Sample	usage	(user	input	shown	in	red	italics):	
python3 –i animalgame.py
>>> t = build_empty_tree()
>>> t = initialize_tree("startingtree.txt", t)
>>> play_game(t)
Let's play a guessing game. Answer yes or no only.
Is it a mammal?
yes or no? yes
Is it kept as a pet?
yes or no? yes
Is it a(n) hamster ?
yes or no? yes
I am a very smart computer.
>>> play_game(t)
Let's play a guessing game. Answer yes or no only.
Is it a mammal?
yes or no? no
Is it a kind of bird?
yes or no? yes
Is it a(n) owl ?
yes or no? no
Better luck next time.
	
Once	you	have	this	completed,	copy	your	current	solution	into	animalgame_v4.py	in	the	pa11
folder	at	the	command	line	prompt	after	leaving	the	python3	interpreter.	Do	not	change	this	copy.	
	
cp animalgame.py animalgame_v4.py ß UPDATED	

	 Page	7	

5.	(2	pts)	Update	your	play_game(tree)	function	in	animalgame.py	so	that	it	updates	the	tree	
if	it	incorrectly	guesses	the	animal.	To	do	this,	you	need	to	update	steps	8	and	9	of	the	algorithm	as	
follows:	

	
8.	Otherwise,	do	the	following:	
	 a.	Print	"Ok,	help	me	learn	for	next	time."	
	 b.	Ask	the	user	to	input	the	animal	using	the	prompt	"What	animal	was	it?"	
	 c.	Ask	the	user	to	input	a	question	for	the	new	animal	using	the	prompt	
	 		"What	question	can	I	ask	that	will	distinguish	your	animal	from	mine?\n"	
	 	 (we	will	assume	the	input	question	ends	with	a	question	mark)	
	 d.	Set	the	tree	list	at	treeindex	to	the	question	input	by	the	user	in	step	8c.	

e.	Set	the	tree	list	at	the	left	child	of	treeindex	to	the	answer	input	by	the	user	in	step	8b.	
f.	Set	the	tree	list	at	the	right	child	of	treeindex	to	the	string	you	saved	in	step	5.	
g.	If	the	index	of	the	right	child	is	greater	than	the	number	of	nodes	stored	in	index	0	of	
the	tree	list,	update	the	number	of	nodes	to	the	index	of	the	right	child.	
g.	Print	"Thank	you."	

9.	Return	tree	as	the	final	step.		
	
You	may	assume	that	the	game	will	not	go	beyond	6	levels	of	nodes.	
	
Sample	usage	(user	input	shown	in	red	italics):	
>>> t = build_empty_tree()
>>> t = initialize_tree("startingtree.txt", t)
>>> t = play_game(t)
Let's play a guessing game. Answer yes or no only.
Is it a mammal?
yes or no? yes
Is it kept as a pet?
yes or no? yes
Is it a(n) hamster ?
yes or no? no
Ok, help me learn for next time.
What animal was it? dog
What question can I ask that will distinguish your animal from mine?
Does it bark?
Thank you.
>>> t
[15, 'Is it a mammal?', 'Is it kept as a pet?', 'Is it a kind of
bird?', 'Does it bark?', 'Is it a farm animal?', 'owl', 'Does it live
in the ocean?', 'dog', 'hamster', 'goat', 'elephant', None, None,
'crab', 'spider', None, None, None, None, None, None, None, None,
None, None, None, None, None, None, None, ..., None]
>>> t = play_game(t)
Let's play a guessing game. Answer yes or no only.
Is it a mammal?
yes or no? no

	 Page	8	

(sample	usage	continued)

Is it a kind of bird?
yes or no? no
Does it live in the ocean?
yes or no? no
Is it a(n) spider ?
yes or no? no
Ok, help me learn for next time.
What animal was it? turtle
What question can I ask that will distinguish your animal from mine?
Does it have a hard shell?
Thank you.
>>> t
[31, 'Is it a mammal?', 'Is it kept as a pet?', 'Is it a kind of
bird?', 'Does it bark?', 'Is it a farm animal?', 'owl', 'Does it live
in the ocean?', 'dog', 'hamster', 'goat', 'elephant', None, None,
'crab', 'Does it have a hard shell?', None, None, None, None, None,
None, None, None, None, None, None, None, None, None, 'turtle',
'spider', None, ..., None]
>>> t = play_game(t)
Let's play a guessing game. Answer yes or no only.
Is it a mammal?
yes or no? yes
Is it kept as a pet?
yes or no? yes
Does it bark?
yes or no? yes
Is it a(n) dog ?
yes or no? yes
I am a very smart computer.

Once	you	have	this	completed,	copy	your	current	solution	into	animalgame_v5.py	in	the	pa11
folder	at	the	command	line	prompt	after	leaving	the	python3	interpreter.	Do	not	change	this	copy.	
	
cp animalgame.py animalgame_v5.py ß UPDATED	
	
	
6.	(1	pt)	Write	the	function	save_tree(filename, tree)	in	the	file	animalgame.py	that	
opens	the	given	filename	for	writing,	and	then	stores	the	contents	of	the	tree	in	the	file.	Questions	and	
answers	should	be	stored	as	given	and	None	should	be	stored	as	a	blank	line.		Every	line	you	store	
should	end	with	a	newline.	Do	not	store	the	count	of	nodes	at	index	0	of	tree	in	the	file	but	you	should	
use	that	to	help	you	control	the	loop	so	that	you	only	include	the	necessary	lines.	You	should	have	no	
additional	lines	after	the	last	line	of	information.	You	should	be	able	to	read	this	file	in	as	the	starting	
tree	when	you	play	the	game	again	so	it	can	continue	to	grow	in	its	"knowledge"	over	time.	
	
	 	

	 Page	9	

Sample	usage	(assuming	you	ran	through	the	example	for	Problem	5):	
>>> save_tree("endingtree.txt", t)

The	file	endingtree.txt	should	have	31	lines	and	look	like	this:	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
The	last	line	should	have	a	newline	so	it	may	seem	that	there	is	another	blank	line	after	the	last	line,	
but	your	cursor	should	not	be	able	to	move	beyond	the	first	position	of	the	next	line	when	you	
examine	this	file	in	an	editor.		
	
Once	you	have	this	completed,	copy	your	current	solution	into	animalgame_v6.py	in	the	pa11
folder	at	the	command	line	prompt	after	leaving	the	python3	interpreter.	Do	not	change	this	copy.	
	
cp animalgame.py animalgame_v6.py ß UPDATED	
	

Is it a mammal?
Is it kept as a pet?
Is it a kind of bird?
Does it bark?
Is it a farm animal?
owl
Does it live in the ocean?
dog
hamster
goat
elephant

crab
Does it have a hard shell?

turtle
spider

	 Page	10	

Submission	
	

At	each	step,	you	should	zip	up	what	you	currently	have	into	pa11.zip	and	submit	this	to	Autolab	
for	grading.	You	should	check	to	see	that	you	have	maximum	credit	for	each	step	you've	completed	
before	moving	on	to	the	next	step,	since	each	step	depends	on	the	previous	steps.	For	later	steps,	you	
will	get	0's	since	you	won't	have	those	files	in	your	zip	file,	but	that's	ok	as	you	work	on	each	part.	
	
At	the	end	of	this	assignment,	you	should	now	have	the	pa11	folder	that	contains	the	following	files:	
	

animalgame_v1.py
animalgame_v2.py
animalgame_v3.py
animalgame_v4.py
animalgame_v5.py
animalgame_v6.py
startingtree.txt
endingtree.txt	

	

You	may	have	additional	files	in	this	folder	which	will	not	be	graded.	Zip	up	the	folder	and	submit	the	
zipped	file	named	as	pa11.zip	on	Autolab	your	final	time	for	your	final	score.	Be	sure	to	check	your	
submissions	to	make	sure	you	are	handing	in	the	correct	files.	

