
	 Page	1	

15-110:	Principles	of	Computing,	Spring	2018	
	

Programming	Assignment	10	
Due:	Tuesday,	April	17	by	9PM	

	
IMPORTANT	ANNOUNCEMENT	

You	cannot	drop	this	assignment	even	if	it	is	your	lowest	PA	score.	
Failure	to	submit	this	assignment	on	time	will	result	in	a	0	which	will	be	included	in	your	PA	total.	
We	only	drop	the	lowest	PA	score	from	PA1-PA8.	Please	submit	whatever	you	can	before	the	

deadline,	even	if	it	is	not	completely	done.	
	

	
Note:	You	are	responsible	for	protecting	your	solutions	to	the	following	problems	from	being	seen	by	
other	students	both	physically	(e.g.,	by	looking	over	your	shoulder	or	verbal	discussion)	and	electronically.	
In	particular,	since	the	lab	machines	use	the	Andrew	File	System	(AFS)	to	share	files	worldwide,	you	need	
to	be	careful	that	you	do	not	put	files	in	a	place	that	is	publicly	accessible.	
	
If	you	are	doing	the	assignment	on	the	Gates-Hillman	Cluster	machines	we	use	in	the	lab	or	on	
unix.andrew.cmu.edu,	please	remember	to	have	your	solutions	inside	a	private	folder	(which	
is	under	your	home	directory).	Our	recommendation	is	that	you	create	a	pa10	folder	under	
~/private/15110	for	this	assignment.	That	is,	the	new	directory	pa10	is	inside	the	directory	
named	15110,	which	is	inside	the	private	directory.	
	
	
	
Setup	
	

For	this	assignment,	you	will	create	a	Python	file	for	each	of	the	problems	below.	You	should	save	all	of	
these	files	in	a	folder	named	pa10.	Once	you	have	every	file,	you	should	zip	up	the	pa10	folder	and	
submit	the	zipped	file	on	Autolab.	
	
This	assignment	will	help	you	put	the	principles	you	learned	in	class	to	creating	a	new	simulation.		
NOTE:	If	you	use	your	own	laptop	and	have	Python	3	installed,	you	should	have	the	tkinter	module	
available.	See	a	TA	if	you	wish	to	install	Python	3	on	your	laptop.	If	you	ssh	into	the	Andrew	servers,	
tkinter	is	now	available	to	import,	but	you	need	to	use	the	–X	option	when	connecting.	
	
	 	

	 Page	2	

Overview		
	
	

In	this	assignment,	you	will	create	a	Python	program	to	allow		
two	players	to	play	a	game	of	Connect	Four,	a	popular	family	game.	
	
The	vertical	game	board	consists	of	7	columns	that	can	hold	up	to	6	discs.	Two	players	(1	and	2)	
alternate	dropping	a	colored	disc	(red	and	yellow,	respectively)	into	one	of	the	columns,	with	each	disc	
falling	as	far	as	it	can	go.	The	first	player	to	get	four	of	the	same	color	in	a	row	(vertically,	horizontally	or	
diagonally)	wins	the	game.	If	neither	player	can	do	this	after	all	disc	locations	are	filled,	the	game	ends	
in	a	tie.		
	
In	this	game,	the	players	are	represented	with	the	numbers	1	(Red)	and	2	(Yellow).	The	game	board	is	
represented	internally	as	a	matrix	(i.e.	list	of	lists)	with	6	rows	and	7	columns.	In	each	cell	of	this	matrix,	
we	store	a	0	if	the	corresponding	board	position	has	no	disc,	a	1	if	there	is	a	red	disc	in	that	position,	or	
a	2	if	there	is	a	yellow	disc	in	that	position.	Initially,	the	matrix	contains	only	0's	since	no	discs	have	
been	played	yet.	Rows	are	numbers	0	through	5	from	top	to	bottom,	and	columns	are	numbered	0	
through	6	from	left	to	right.	
	
To	display	the	board,	we	will	use	a	window	with	a	Canvas	with	a	width	of	700	pixels	and	a	height	of	600	
pixels.	The	window	is	broken	up	into	42	square	regions	of	size	100	X	100,	forming	6	rows	and	7	columns.	
In	each	square,	we	draw	a	circle	centered	in	the	square	region	with	a	diameter	of	90	pixels,	filled	in	with	
either	white	(empty),	red	or	yellow,	depending	on	the	value	stored	in	the	equivalent	position	in	the	
matrix	used	to	represent	the	game	board.	Each	circle	should	have	an	explicit	green	outline.	
	
For	example,	here	is	the	matrix	for	the	game	board	shown	at	right.	
	
[[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0],
 [2, 1, 2, 1, 2, 1, 0],
 [2, 2, 2, 1, 1, 2, 0],
 [2, 1, 1, 2, 2, 1, 0],
 [1, 2, 2, 1, 1, 1, 2]]
	
	
	
	
	
	
	
	
	
	
NOTE:	If	you	have	any	issues	with	colorblindness	or	sight	concerns,	please	contact	your	
instructor	for	accommodations.	 	

	 Page	3	

Problems	
	

Start	by	downloading	a	copy	of	the	file	connect4.py	into	your	pa10	folder	from	the	course	website.	
Read	through	the	first	two	functions	we	give	you	to	see	how	they	work.	You	are	responsible	for	
understanding	all	of	the	code	we've	given	you.	The	main	function	that	you	run	to	play	the	game	is	called	
play().	
	
You	will	see	that	the	file	we	give	you	has	all	of	the	functions	represented	as	"stubs".	This	means	that	
each	function	is	written	so	that	it	returns	something	so	that	the	entire	program	will	run	without	
crashing	if	you	haven't	completed	all	of	the	functions.	As	you	complete	each	function,	replace	the	code	
we	give	you	for	the	function	in	question	with	your	own	code,	but	leave	the	subsequent	stubs	in	place	
until	you	have	tested	your	current	function(s)	completely.	

	
1. (1	point)	Complete	the	function	new_board()	(in	the	file	connect4.py).	This	function	should	

create	and	return	a	matrix,	i.e.	list	of	lists,	with	6	rows	and	7	columns	with	all	values	set	to	0.	This	
will	represent	a	new	game	board	at	the	start	of	a	game	(i.e.	no	players	have	played	yet).	
	

2. (1	point)	Complete	the	function	display_board(c, board)	(in	the	file	connect4.py).	This	
function	has	two	parameters:	c	represents	the	canvas	that	is	created	in	the	play	function	that	
displays	the	game	and	board	represents	the	6	X	7	matrix	storing	what	is	in	each	position	of	the	
game	board	(0,	1,	or	2).	This	function	should	draw	the	visual	representation	of	the	current	game	
board	on	the	canvas.	Remember	that	each	circle	should	have	a	diameter	of	90	pixels,	not	100,	and	
be	centered	in	each	row	and	column.	There	should	be	some	blue	background	around	each	circle.	
The	circles	should	not	touch.	They	should	be	separated	by	10	pixels.	
	
TESTING	YOUR	WORK:	Once	you	finish		
this	function,	you	should	be	able	to	run		
the	program	by	calling	the	function	play()	
in	the	python3	interpreter.	You	should		
see	an	empty	board	with	42	white	circles.		
You	can	try	to	enter	moves,	but	none	
will	be	accepted.	
	
> python3 -i connect4.py
>>> play()
	
	
	
	
	
Once	you	have	this	completed,	copy	your	current	solution	into	connect4_v1.0.py	in	the	pa10	
folder	at	the	command	line	prompt	after	leaving	the	python3	interpreter.	Do	not	change	this	copy.	
	
cp connect4.py connect4_v1.0.py	

	 Page	4	

3. (3	points)	Complete	the	function	add_piece(board, player, column)	(in	the	file	
connect4.py).	This	function	has	three	parameters:	board	represents	the	6	X	7	matrix	storing	
what	is	in	each	position	of	the	game	board	(0,	1	or	2),	player	represents	the	number	of	the	
current	player	who	is	dropping	a	disc	(1	or	2),	and	column	represents	the	column	where	the	disc	is	
being	dropped	(an	integer	between	0	and	6,	inclusive).	This	function	should	update	the	board	to	the	
state	it	would	be	in	after	the	disc	has	been	dropped	down	the	given	column	(if	possible).		
	
The	basic	idea	is	to	scan	the	given	column	from	the	bottom	to	the	top	for	the	first	empty	(0)	cell.	
You	will	then	"drop"	the	disc	into	that	cell	by	storing	the	player's	number	in	that	location.	If	the	
entire	column	is	full,	then	you	will	return	None	and	leave	the	board	as	is.	

		
General	algorithm:	
	
I.	For	each	row	from	5	down	to	0,	in	the	given	column,	do	the	following:	
				A.	If	board[row][column]	is	0	(i.e.	empty),	then	do	the	following:	
								1.	Store	player	in	board[row][column].	
								2.	Return	the	row	where	the	disc	stopped	in	that	column.	
II.	If	every	row	is	tested	and	none	work,	return	None.	
	
TESTING	YOUR	WORK:	Once	you	finish	this	function,	you	should	be	able	to	run	the	program	by	
calling	the	function	play()	in	the	python3	interpreter	and	play	the	game.	You	should	be	able	to	
drop	discs	(alternating	red	and	yellow),	but	the	game	will	not	test	to	see	if	anyone	wins	yet.		
	
> python3 -i connect4.py
>>> play()
Player 1: Which column (0-6, quit)? 2
Player 2: Which column (0-6, quit)? 1
Player 1: Which column (0-6, quit)? 2
Player 2: Which column (0-6, quit)? 2
Player 1: Which column (0-6, quit)? 1
Player 2: Which column (0-6, quit)? 2
Player 1: Which column (0-6, quit)? 4
Player 2: Which column (0-6, quit)? 5
Player 1: Which column (0-6, quit)? 5
Player 2: Which column (0-6, quit)? quit	
[[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0,
0, 0, 0], [0, 0, 2, 0, 0, 0, 0], [0,
0, 2, 0, 0, 0, 0], [0, 1, 1, 0, 0, 1,
0], [0, 2, 1, 0, 1, 2, 0]]
	
	
	
	
Once	you	have	this	completed,	copy	your	current	solution	into	connect4_v2.0.py	in	the	pa10	
folder	at	the	command	line	prompt	after	leaving	the	python3	interpreter.	Do	not	change	this	copy.	
	
cp connect4.py connect4_v2.0.py	
	

	 Page	5	

4. (1	point)	Complete	the	function	check_win_vertical(board, row, column)	(in	the	file	
connect4.py).	This	function	has	three	parameters:	board	represents	the	6	X	7	matrix	storing	
what	is	in	each	position	of	the	game	board	(0,	1,	or	2),	and	row	and	column	represents	where	the	
most	recent	disc	was	placed.	This	function	should	return	True	if	the	player	who	placed	this	disc	has	
won	vertically,	or	False	otherwise.	
	
To	test	if	the	player	wins	vertically,	you	only	have	to	count	the	number	of	discs	of	the	same	player	
below	the	newly	placed	disc	until	you	either	find	a	different	player	or	you	reach	the	bottom	of	the	
game	board.	None	of	the	locations	below	the	newly	placed	disc	can	be	empty.	If	your	count	gets	to	
4,	that	player	has	won.	
	
General	algorithm:	
	
I.	Set	player	equal	to	board[row][column].	
II.	Set	count	equal	to	1.	(Count	the	newly	dropped	disc.)	
III.	Set	r	equal	to	row+1.	(Start	in	the	next	row,	same	column.)	
IV.	While	r	is	less	than	or	equal	to	5	and	board[r][column]	is	equal	to	player,	do	the	following:	
						A.	Add	1	to	count.	
						B.	Add	1	to	r	to	move	to	next	row.	
V.	If	count	is	equal	to	4,	return	True.	Otherwise	return	False.	
	
TESTING	YOUR	WORK:	Once	you	finish	this	function,	you	should	be	able	to	run	the	program	by	
calling	the	function	play()	in	the	python3	interpreter	and	play	the	game.	You	should	be	able	to	
drop	discs	(alternating	red	and	yellow)	and	detect	a	player	who	wins	vertically.	

	
Once	you	have	this	completed,	copy	your	current	solution	into	connect4_v3.0.py	in	the	pa10	
folder	at	the	command	line	prompt	after	leaving	the	python3	interpreter.	Do	not	change	this	copy.	
	
cp connect4.py connect4_v3.0.py

5. (2	points)	Complete	the	function	check_win_horizontal(board, row, column)	(in	the	
file	connect4.py).	This	function	has	three	parameters:	board	represents	the	6	X	7	matrix	
storing	what	is	in	each	position	of	the	game	board	(0,	1,	or	2),	and	row	and	column	represents	
where	the	most	recent	disc	was	placed.	This	function	should	return	True	if	the	player	who	placed	
this	disc	has	won	horizontally,	or	False	otherwise.	
	
This	function	works	similarly	to	the	previous	function,	except	that	you	have	to	count	the	number	of	
adjacent	discs	of	the	same	color	both	left	and	right	of	the	most	recently	placed	disc	to	see	if	the	
complete	total	is	at	least	4.	Make	sure	you	understand	how	the	algorithm	works.	
	
General	algorithm:		
	
I.	Set	player	equal	to	board[row][column].	
II.	Set	count	equal	to	1.	 	 	 	 	 	 	 continued	on	next	page	

	 Page	6	

III.	Set	c	equal	to	column	+	1.		
IV.	While	c	is	less	than	or	equal	to	6	and	board[row][c]	is	equal	to	player,	do	the	following:	
						A.	Add	1	to	count.	
						B.	Add	1	to	c.	
V.	Set	c	equal	to	column	-	1.	
VI.	While	c	is	greater	than	or	equal	to	0	and	board[row][c]	is	equal	to	player,	do	the	following:	
						A.	Add	1	to	count.	
						B.	SUBTRACT	1	FROM	c.				ß	CORRECTION	
VII.	If	count	is	at	least	4,	return	True.	Otherwise	return	False.	
	
TESTING	YOUR	WORK:	Once	you	finish	this	function,	you	should	be	able	to	run	the	program	by	
calling	the	function	play()	in	the	python3	interpreter	and	play	the	game.	You	should	be	able	to	
drop	discs	(alternating	red	and	yellow)	and	detect	a	player	who	wins	vertically	or	horizontally.	
	
Once	you	have	this	completed,	copy	your	current	solution	into	connect4_v4.0.py	in	the	pa10	
folder	at	the	command	line	prompt	after	leaving	the	python3	interpreter.	Do	not	change	this	copy.	
	
cp connect4.py connect4_v4.0.py	
	

6. (2	points)	Complete	the	functions	check_win_diagonal1(board, row, column)		
and	check_win_diagonal2(board, row, column)	(in	the	file	connect4.py).		
Each	function	should	return	True	if	the	player	who	placed	the	disc	has	won	diagonally,	or		
False	otherwise.	There	are	two	functions	since	there	are	two	diagonal	directions.	Each		
function	should	test	one	diagonal	direction.	You	will	need	to	figure	out	how	to	write	these		
functions,	but	they	are	similar	to	the	functions	you	wrote	above.		
	
TESTING	YOUR	WORK:	Once	you	finish	this	function,	you	should	be	able	to	run	the	program	by	
calling	the	function	play()	in	the	python3	interpreter	and	play	the	entire	game.	
	
Once	you	have	this	completed,	copy	your	current	solution	into	connect4_v5.0.py	in	the	pa10	
folder	at	the	command	line	prompt	after	leaving	the	python3	interpreter.	Do	not	change	this	copy.	
	
cp connect4.py connect4_v5.0.py
	
	

Submission	
	

You	should	now	have	the	pa10	folder	that	contains	(up	to	5)	completed	versions	of	the	game:	
	

connect4_v1.0.py connect4_v2.0.py connect4_v3.0 etc.	
	

We	will	grade	the	highest	version	number	for	each	submission	you	make.	You	may	have	additional	files	but	
these	will	not	be	graded.	Zip	up	the	folder	and	submit	the	zipped	file	named	as	pa10.zip	on	Autolab.	
You	may	submit	as	you	get	each	step	done	to	get	partial	credit.	Don't	wait	until	the	end	to	submit	
everything.	Be	sure	to	check	your	submission	to	see	that	you	submitted	the	correct	code	each	time.	

Diagonal	1	

Diagonal	2	

