

UNIT 9A Randomness in Computation: Random Number Generators

Course Announcements

- We are in the process of setting up the tutoring help system.
- PS7 is due Wednesday 3/20 in class
- Midterm 2 (written) is Wed March 27

Randomness in Computing

- Determinism -- in all algorithms and programs we have seen so far, given an input and a sequence of steps, we get a unique answer. The result is predictable.
- However, some computations need steps that have unpredictable outcomes
 - Games, cryptography, modeling and simulation, selecting samples from large data sets
- We use the word "randomness" for unpredictability, having no pattern

Defining Randomness

- Philosophical question
 - Are there any events that are really random?
 - Does randomness represent lack of knowledge of the exact conditions that would lead to a certain outcome?

Obtaining Random Sequences

- Definition we adopt: A sequence is random if, for any value in the sequence, the next value in the sequence is totally independent of the current value.
- If we need random values in a computation, how can we obtain them?

Obtaining Random Sequences

- Precomputed random sequences. For example, A Million Random Digits with 100,00 Normal Deviates (1955): A 400 page reference book by the RAND corporation
 - 2500 random digits on each page
 - Generated from random electronic pulses
- True Random Number Generators (TRNG)
 - Extract randomness from physical phenomena such as atmospheric noise, times for radioactive decay
- Pseudo-random Number Generators (PRNG)
 - Use a formula to generate numbers in a deterministic way but the numbers appear to be random

Random numbers in Ruby

- To generate random numbers in Ruby, we can use the rand function.
- The rand function take a positive integer argument
 (n) and returns an integer between 0 and n-1.

```
>> rand(15110)
```

```
=> 1239
```

Is rand truly random?

- The function rand uses some algorithm to determine the next integer to return.
- If we knew what the algorithm was, then the numbers generated would not be truly random.
- We call rand a pseudo-random number generator (PRNG) since it generates numbers that appear random but are not truly random.

Creating a PRNG

Consider a pseudo-random number generator
 prng1 that takes an argument specifying the length
 of a random number sequence and returns an array
 with that many "random" numbers.

```
>> prng1(9) => [0, 7, 2, 9, 4, 11, 6, 1, 8]
```

Does this sequence look random to you?

Creating a PRNG

• Let's run **prng1** again:

```
>> prng1(15)
=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7, 2]
```

- Now does this sequence look random to you?
- What do you think the 16th number in the sequence is?

Another PRNG

Let's try another PRNG function:

```
=> prng2(15)
>> [0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4]
```

- Does this sequence appear random to you?
- What do you think is the 16th number in this sequence?

PRNG Period

 Let's define the PRNG period as the number of values in a pseudo-random number generator sequence before the sequence repeats.

Looking at prng1

```
def prng1(n)
                  ; seed (starting value)
  seq = [0]
  for i in 1..n-1 do
     seq << (seq.last + 7) % 12
 end
  return seq
end
>> prng1(15)
=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3,
      10, 5, 0, 7, 2]
```

Looking at prng2

```
def prng2(n)
                    ; seed (starting value)
     seq << (seq.last + 8) % 12
 end
 return seq
end
>> prng2(15)
=> [0, 8, 4, 0, 8, 4, 0, 8, 4, 0,
    8, 4, 0, 8, 4]
```

Linear Congruential Generator (LCG)

- A more general version of the PRNG used in these examples is called a linear congruential generator.
- Given the current value x_i of PRNG using the linear congruential generator method, we can compute the next value in the sequence, x_{i+1}, using the formula x_{i+1} = (a x_i + c) modulo m where a, c, and m are predetermined constants.

$$-prng1$$
: a = 1, c = 7, m = 12

$$-prng2$$
: a = 1, c = 8, m = 12

Picking the constants a, c, m

- If we choose a large value for m, and appropriate values for a and c that work with this m, then we can generate a very long sequence before numbers begin to repeat.
 - Ideally, we could generate a sequence with a maximum period of m.

Picking the constants a, c, m

- Theorem: The LCG will have a period of m for all seed values if and only if:
 - c and m are relatively prime (i.e. the only positive integer that divides both c and m is 1)
 - a-1 is divisible by all prime factors of m
 - if m is a multiple of 4, then a-1 is also a multiple of 4
- Example: prng1 (a = 1, c = 7, m = 12)
 - Factors of c: <u>1</u>, 7 Factors of m: <u>1</u>, 2, 3, 4, 6, 12
 - 0 is divisible by all prime factors of 12 \rightarrow true
 - if 12 is a multiple of 4, then 0 is also a multiple of 4 \rightarrow true

Example

$$x_{i+1} = (a \ x_i + c) \text{ modulo m}$$
 $x_0 = 4$
 $a = 5$
 $c = 3$
 $m = 8$
 $(5 \times 4 + 3)^6/8 = (5 \times 7 + 3)^6/8$

- Compute $x_1, x_2, ...,$ for this LCG formula.
- What is the period of this formula?

 If the period is maximum, does it satisfy the three properties for maximal LCM?

LCMs in the Real World

- glibc (used by the c compiler gcc): a = 1103515245, c = 12345, $m = 2^{32}$
- Numerical Recipes (popular book on numerical methods and analysis):

$$a = 1664525$$
, $c = 1013904223$, $m = 2^{32}$

Random class in Java:

$$a = 25214903917$$
, $c = 11$, $m = 2^{48}$

The PRNG built into Ruby has a period of 2¹⁹⁹³⁷.

Rest of the Week

- Uses of PRNG in games
- Cellular automata and psedorandomness