
UNIT 9A
Randomness in Computation:

Random Number Generators

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
1

Course Announcements
• We are in the process of setting up the

tutoring help system.

• PS7 is due Wednesday 3/20 in class

• Midterm 2 (written) is Wed March 27

2

Randomness in Computing

• Determinism -- in all algorithms and programs we

have seen so far, given an input and a sequence of

steps, we get a unique answer. The result is

predictable.

• However, some computations need steps that have

unpredictable outcomes
– Games, cryptography, modeling and simulation, selecting samples

from large data sets

• We use the word “randomness” for unpredictability,

having no pattern

3

Defining Randomness

• Philosophical question

• Are there any events that are really random?

• Does randomness represent lack of knowledge of the

exact conditions that would lead to a certain outcome?

4

Obtaining Random Sequences

• Definition we adopt: A sequence is random if,

for any value in the sequence, the next value

in the sequence is totally independent of the

current value.

• If we need random values in a computation,

how can we obtain them?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
5

Obtaining Random Sequences
• Precomputed random sequences. For example, A Million

Random Digits with 100,00 Normal Deviates (1955): A 400

page reference book by the RAND corporation

– 2500 random digits on each page

– Generated from random electronic pulses

• True Random Number Generators (TRNG)

– Extract randomness from physical phenomena such as atmospheric

noise, times for radioactive decay

• Pseudo-random Number Generators (PRNG)

– Use a formula to generate numbers in a deterministic way but the

numbers appear to be random

6

Random numbers in Ruby

• To generate random numbers in Ruby, we can use

the rand function.

• The rand function take a positive integer argument

(n) and returns an integer between 0 and n-1.

>> rand(15110)

=> 1239

>> rand(15110)

=> 7320

>> rand(15110)

=> 84

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
7

Is rand truly random?

• The function rand uses some algorithm to

determine the next integer to return.

• If we knew what the algorithm was, then the

numbers generated would not be truly

random.

• We call rand a pseudo-random number

generator (PRNG) since it generates numbers

that appear random but are not truly random.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
8

Creating a PRNG

• Consider a pseudo-random number generator

prng1 that takes an argument specifying the length

of a random number sequence and returns an array

with that many “random” numbers.

>> prng1(9)

=> [0, 7, 2, 9, 4, 11, 6, 1, 8]

• Does this sequence look random to you?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
9

Creating a PRNG

• Let’s run prng1 again:

>> prng1(15)

=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3,

10, 5, 0, 7, 2]

• Now does this sequence look random to you?

• What do you think the 16th number in the

sequence is?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
10

Another PRNG

• Let’s try another PRNG function:

=> prng2(15)

>> [0, 8, 4, 0, 8, 4, 0, 8, 4, 0,

8, 4, 0, 8, 4]

• Does this sequence appear random to you?

• What do you think is the 16th number in this

sequence?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
11

PRNG Period

• Let’s define the PRNG period as the number of

values in a pseudo-random number generator

sequence before the sequence repeats.

[0, 7, 2, 9, 4, 11, 6, 1, 8, 3,

10, 5, 0, 7, 2]

period = 12

[0, 8, 4, 0, 8, 4, 0, 8, 4, 0,

8, 4, 0, 8, 4]

period = 3

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
12

next number = (last number + 7) mod 12

next number = (last number + 8) mod 12

Looking at prng1

def prng1(n)

seq = [0] ; seed (starting value)

for i in 1..n-1 do

seq << (seq.last + 7) % 12

end

return seq

end

>> prng1(15)

=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3,

10, 5, 0, 7, 2]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
13

Looking at prng2

def prng2(n)

seq = [0] ; seed (starting value)

for i in 1..n-1 do

seq << (seq.last + 8) % 12

end

return seq

end

>> prng2(15)

=> [0, 8, 4, 0, 8, 4, 0, 8, 4, 0,

8, 4, 0, 8, 4]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
14

Linear Congruential Generator (LCG)

• A more general version of the PRNG used in these examples is

called a linear congruential generator.

• Given the current value xi of PRNG using the linear

congruential generator method, we can compute the next

value in the sequence, xi+1, using the formula

xi+1 = (a xi + c) modulo m where a, c, and m are pre-

determined constants.

– prng1: a = 1, c = 7, m = 12

– prng2: a = 1, c = 8, m = 12

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
15

Picking the constants a, c, m

• If we choose a large value for m, and appropriate

values for a and c that work with this m, then we can

generate a very long sequence before numbers begin

to repeat.

– Ideally, we could generate a sequence with a

maximum period of m.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
16

Picking the constants a, c, m

• Theorem: The LCG will have a period of m for all seed

values if and only if:

– c and m are relatively prime (i.e. the only positive integer

that divides both c and m is 1)

– a-1 is divisible by all prime factors of m

– if m is a multiple of 4 , then a-1 is also a multiple of 4

• Example: prng1 (a = 1, c = 7, m = 12)

– Factors of c: 1, 7 Factors of m: 1, 2, 3, 4, 6, 12

– 0 is divisible by all prime factors of 12 � true

– if 12 is a multiple of 4 , then 0 is also a multiple of 4 � true

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
17

Example

xi+1 = (a xi + c) modulo m

x0 = 4 a = 5 c = 3 m = 8

• Compute x1, x2, ..., for this LCG formula.

• What is the period of this formula?

– If the period is maximum, does it satisfy the three

properties for maximal LCM?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
18

LCMs in the Real World

• glibc (used by the c compiler gcc):

a =1103515245, c = 12345, m = 232

• Numerical Recipes (popular book on numerical

methods and analysis):

a = 1664525, c= 1013904223, m = 232

• Random class in Java:

a = 25214903917, c = 11, m = 248

• The PRNG built into Ruby has a period of 219937.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
19

Rest of the Week

• Uses of PRNG in games

• Cellular automata and psedorandomness

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
20

