Vb atabo e
"YY XX Y YY)

UNIT 6A
Organizing Data

15110 Principles of Computing, Carnegie Mellon
University — CORTINA/GUNA

Announcements

 We will be splitting the first lecture into two groups for the
exam. My slides from last week has the exact information
about who needs to go where for the exam.

— 2:30 Exam: AMJ{) &w DA
| . lo9ps
e Sections A, B, C, D, E go to Rashid (GHC 4401) {’
* Sections F, G go to PH 125C. Nesked _\
— 3:30 Exam: Recurs
« Sections H, I, J, K, L, M, N all go to Rashid (GHC 4401). g“““*"‘f"s
— Bring your CMU id! SUW‘“/\
] See
* People who need extended time should 3

confirm their arrangements with Dilsun PD“?)O

— dilsun@cs.cmu.edu

15110 Principles of Computing, 5
Carnegie Mellon University - CORTINA

Data Explosion

 The data on Internet doubles every 6 months

* Challenge is store the data so they can be
searched easily

 What are some algorithms for searching data?

_ inere SoaeN O(W)
‘ — \Dh;?) NN @(\06‘(\>

o Serled)
%\\‘/8‘\ () ‘og)(?.ﬂ) ‘
- = el

15110 Principles of Computing,
Carnegie Mellon University - Guna

Data Processing Challenges

Sort million records in a fraction of a second

Build a relationship graph from a known set of
relationship pairs

Find the shortest distance from A to B

Find all people who are in proximity to me
What are some others?

15110 Principles of Computing,
Carnegie Mellon University - GUNA

How are data stored to meet these
challenges

Local Storage Devices

Images from many public sources 15110 Principles of Computing

Carnegie Mellon University - GUNA

A Cloud Architecture

: ey s SRR, or i
N m

Source: Amazon.com

15110 Principles of Computing,
Carnegie Mellon University - Guna

How is data processed?

From devices to memory RN
I bl

e 7

N\ = %
R[S) 22—
—

L

‘ N\W“W \X”\r b (ﬂw‘{\')

-] w\

15110 Principles of Computing,
Carnegie Mellon University - GUNA

Data Structures

A data structure is a way of storin ts
computer so that it can be use@f_iiiently.

— Choosing the right data structure will
allow us to develop certain algorithms
for that data that are more efficient.

or list) is a very simple data
structure for holding a sequence of data.

WS o a2

V@\/Ji / l\\ |

/ T ——

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Examples of data structures
0 | 2 \\U,Qv

[T 111 Sl
D«*’J b\r\\‘d L\sk e

R %DH

b\ M-‘J Senals
N &2

15110 Principles of Computing,
Carnegie Mellon University - GUNA

How Arrays are stored in memory

\p\"'\lﬂ 4P
e k

[)) /@ N ‘

= 4 byt N
lv\\-ﬂf'* 1 L 2
% .

SIS
Als)— A+ 3;4 e
\DV)M"

(A

15110 Principles of Computing,
Carnegie Mellon University - GUNA

10

Arrays: Pros and Cons

* Pros:
— Access to an array element since we can
compute its location quickly.
— Y
e Cons: (¥ “-37

\—

— If we want t@@ an element, we have
to shift subseq elements which slows our
computation down.) b(\é— J

— We need a large enough block of memory to hold
our array.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 1

Array operations
* Finding length

Al
Ub A[WHﬂ:S
* Appending ane eme%éo end (eor=tot<

%U@%ﬁfj

A :C\ Z’Sy-
ALS
* Removing an element A\'M"‘ﬁ*(”
— Array.delete_at(array.index(elem)) /

L~ (\ 3\-(5:)

15110 Principles of Computing,

Carnegie Mellon University - GUNA 12

Array operations

+ Merging two arrays |l)

[sk + vz

[ax/
Mll}

* Sorting an array Cr -

mseck- Sob O () ke & om*) ¢={)

e Searching an array
Linear \bw\
’ Swano elements

&;‘\ . In 0. - Lighlbng—|

B = [l |

15110 Principles of Computing,

13

Carnegie Mellon University - GUNA

Merge two arrays
def merge(listl, list2)

n = list1.length

m = list2.length

C=I]

for i from 0..n-1
C<< list1]i]

for j from 0..m-1
C<< list2[]]

return C

end

15110 Principles of Computing,
Carnegie Mellon University - GUNA

14

Sub arrays

def subarray(list, start, end)

C=[]

foriin start..end do
C<<list[i]

return C

end

This returns a subarray from start to end

15110 Principles of Computing,
Carnegie Mellon University - GUNA

15

Linked Lists

Another data structure that stores a sequence of
data values is called the linked list.

Data values in a linked list do not have to be stored
in adjacent memory cells.

To accommodate_this feature, each data value has
an addition that indicates where the
next data value is in computer memory.

In order to use the linked list, we only need to
know where the first data value is stored.

How Linked Lists are stored in

//@ Jmemory

{]

15110 Principles of Computing,

Carnegie Mellon Univers

ity - GUNA

[=1¢) @fﬁ

NQ,
s

W\

Linked List operations

15110 Principles of Computing,
Carnegie Mellon University - GUNA

18

Linked Lists: Pros and Cons

* Pros:

—In Ing a | ta does not require us to
move/shif} subsequent data elements.

e Cons:

— If we want to access agp_ecific element, we need
to traverse the list from the head of the list to find
it which can take longer than an array access.

— Linked lists require more memory. (Why?)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 19

Two-dimensional arrays

Some data can be organized efficiently in a table
(also called a matrix or 2-dimensional array)

Each cell is denoted
with two subscripts,
a row and column
indicator

B[2][3] = 50

A~ winnh -~ O

l

1

2 3 4

0
3

18

43

49

65

14

30

32

53

/3

9

28

| 38+ 50

/3

10

24

37

58

62

/

19

40

46

66

2D Arrays in Ruby

/wm
data = [[1, 2, 3, 4], O 1 2 3
[5, 6, 7, 8], 01|12 |3]| 4
19, 10, 11, 12] 1156 |78
]
‘VO\W@ 219 (1011112
data[0] => [1, 2, 3, 4]

data[l][2] => 7
data[2][5] => nil
data[4][2] => undefined method '[]' for nil

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 2

2D Array Example in Ruby

* Find the sum of all elements in a 2D array

def sumMatrix(table) number of rows in the table

0 /

for row in 0..table.length-1 do

sSum

for col in 0..table[row].length-1 do

sum = sum + table[row] [col]
i o —

end
number of columns in the
end

4 given row of the table
return sum O q{\/

end
[AR'QA
15110 Principles of Computing,

Carnegie Mellon University - CORTINA

22

Stacks

A stack is a data structure that works

on the principle of Last In First Out (LIFO).

— LIFO: The last item put on the stack is
the first item that can be taken off.

Common stack operations:

_ — put a new element on to the
op of the stack

— — remove the top element from the
top of the stack

Applications: calculators, compilers,
programming

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

T« o«

23

EEX(41) —— 3O% |
? IR |
RPN Pog ((W
=3 |4
Cz)s' 5[4
e Some modern calculators use Reverse Polish Notatio

(RPN)

— Developed in 1920 by
Jan Lukasiewicz

— Computation of
mathematical formulas
can be done without
using any parentheses

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

24

RPN Example

Convert the following standard mathematical
expression into RPN:

(23 — 3) / (4 + 06)
/A JW\
23 3 -

operandl operand2 operator operandl operand2 operator

Y) \)
¢ %\»
23 3 — 4 6 + /

operandl operand?2 operator

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Evaluating RPN with a Stack

A
i< 0
l‘ 23| 3 - 4 6 +
x € Ali]
i<Ci+1 |q
yes v
| == A.length?
no
o xa number? ——
yes Pop top 2 numbers S
Perform operation
Pushxon S Push result on S
¥ ¥
Output]
Pop S / Answer: 2

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Stacks in Ruby

You can treat arrays (lists) as stacks in Ruby.

stack X
stack = [] []
stack.push (1) [1]
stack.push (2) (1, 2]
stack.push (3) (1,2, 3]
X = stack.pop() (1, 2] 3
X = stack.pop() [1]
X = stack.pop() []
x = stack.pop () nil nil

