
UNIT 6A

Organizing Data

15110 Principles of Computing, Carnegie Mellon

University – CORTINA/GUNA
1

Announcements
• We will be splitting the first lecture into two groups for the

exam. My slides from last week has the exact information

about who needs to go where for the exam.

– 2:30 Exam:

• Sections A, B, C, D, E go to Rashid (GHC 4401)

• Sections F, G go to PH 125C.

– 3:30 Exam:

• Sections H, I, J, K, L, M, N all go to Rashid (GHC 4401).

– Bring your CMU id!

• People who need extended time should

confirm their arrangements with Dilsun

– dilsun@cs.cmu.edu
15110 Principles of Computing,

Carnegie Mellon University - CORTINA
2

Data Explosion
• The data on Internet doubles every 6 months

• Challenge is store the data so they can be

searched easily

• What are some algorithms for searching data?

15110 Principles of Computing,

Carnegie Mellon University - Guna
3

Data Processing Challenges

• Sort million records in a fraction of a second

• Build a relationship graph from a known set of

relationship pairs

• Find the shortest distance from A to B

• Find all people who are in proximity to me

• What are some others?

15110 Principles of Computing,

Carnegie Mellon University - GUNA
4

How are data stored to meet these

challenges

15110 Principles of Computing,

Carnegie Mellon University - GUNA
5

Local Storage Devices

Images from many public sources

A Cloud Architecture

15110 Principles of Computing,

Carnegie Mellon University - Guna
6

Source: Amazon.com

How is data processed?
From devices to memory

15110 Principles of Computing,

Carnegie Mellon University - GUNA
7

Data Structures

A data structure is a way of storing data in a

computer so that it can be used efficiently.

– Choosing the right data structure will

allow us to develop certain algorithms

for that data that are more efficient.

– An array (or list) is a very simple data

structure for holding a sequence of data.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
8

Examples of data structures

15110 Principles of Computing,

Carnegie Mellon University - GUNA
9

How Arrays are stored in memory

15110 Principles of Computing,

Carnegie Mellon University - GUNA
10

Arrays: Pros and Cons

• Pros:

– Access to an array element is fast since we can

compute its location quickly.

• Cons:

– If we want to insert or delete an element, we have

to shift subsequent elements which slows our

computation down.

– We need a large enough block of memory to hold

our array.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
11

Array operations

• Finding length

• Appending an element to end

• Removing an element

– Array.delete_at(array.index(elem))

15110 Principles of Computing,

Carnegie Mellon University - GUNA
12

Array operations

• Merging two arrays

• Sorting an array

• Searching an array

• Swapping two elements

15110 Principles of Computing,

Carnegie Mellon University - GUNA
13

Merge two arrays

def merge(list1, list2)

15110 Principles of Computing,

Carnegie Mellon University - GUNA
14

n = list1.length

m = list2.length

C = []

for i from 0..n-1

C<< list1[i]

for j from 0..m-1

C<< list2[j]

return C

end

Sub arrays

def subarray(list, start, end)

15110 Principles of Computing,

Carnegie Mellon University - GUNA
15

C=[]

for i in start..end do

C<<list[i]

return C

end

This returns a subarray from start to end

Linked Lists

• Another data structure that stores a sequence of

data values is called the linked list.

• Data values in a linked list do not have to be stored

in adjacent memory cells.

• To accommodate this feature, each data value has

an additional “pointer” that indicates where the

next data value is in computer memory.

• In order to use the linked list, we only need to

know where the first data value is stored.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
16

How Linked Lists are stored in

memory

15110 Principles of Computing,

Carnegie Mellon University - GUNA
17

Linked List operations

15110 Principles of Computing,

Carnegie Mellon University - GUNA
18

Linked Lists: Pros and Cons

• Pros:

– Inserting and deleting data does not require us to

move/shift subsequent data elements.

• Cons:

– If we want to access a specific element, we need

to traverse the list from the head of the list to find

it which can take longer than an array access.

– Linked lists require more memory. (Why?)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
19

Two-dimensional arrays

• Some data can be organized efficiently in a table

(also called a matrix or 2-dimensional array)

• Each cell is denoted

with two subscripts,

a row and column

indicator

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
20

B 0 1 2 3 4

0 3 18 43 49 65

1 14 30 32 53 75

2 9 28 38 50 73

3 10 24 37 58 62

4 7 19 40 46 66

B[2][3] = 50

2D Arrays in Ruby

data = [[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12]

]

data[0] => [1, 2, 3, 4]

data[1][2] => 7

data[2][5] => nil

data[4][2] => undefined method '[]' for nil

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
21

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

2D Array Example in Ruby

• Find the sum of all elements in a 2D array
def sumMatrix(table)

sum = 0

for row in 0..table.length-1 do

for col in 0..table[row].length-1 do

sum = sum + table[row][col]

end

end

return sum

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
22

number of rows in the table

number of columns in the
given row of the table

Stacks

• A stack is a data structure that works

on the principle of Last In First Out (LIFO).

– LIFO: The last item put on the stack is

the first item that can be taken off.

• Common stack operations:

– Push – put a new element on to the

top of the stack

– Pop – remove the top element from the

top of the stack

• Applications: calculators, compilers,

programming

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
23

RPN

• Some modern calculators use Reverse Polish Notation

(RPN)

– Developed in 1920 by

Jan Lukasiewicz

– Computation of

mathematical formulas

can be done without

using any parentheses

– Example:

(3 + 4) * 5 =

becomes in RPN:

3 4 + 5 *

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
24

RPN Example

Convert the following standard mathematical

expression into RPN:

(23 – 3) / (4 + 6)

23 3 – 4 6 +
operand1 operand2 operator operand1 operand2 operator

23 3 – 4 6 + /
operand1 operand2 operator

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
25

Evaluating RPN with a Stack

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
26

A

S

i == A.length?

Pop top 2 numbers

Perform operation

Push result on S
Push x on S

i � 0

Output

Pop S

yes

no

A

x � A[i]

Is x a number?

yes

no

i � i + 1

23 – 3 =

20

23 3 - 4 6 + /

23

23 3 - 4 6 + /

3

23

23 3 - 4 6 + /

20

23 3 - 4 6 + /

4

20

23 3 - 4 6 + /

6

4

20

23 3 - 4 6 + /

20

4 + 6 =

10

10

20

23 3 - 4 6 + /

20 / 10

= 2

2

23 3 - 4 6 + /

Answer: 2

Stacks in Ruby

• You can treat arrays (lists) as stacks in Ruby.
stack x

stack = [] []

stack.push(1) [1]

stack.push(2) [1,2]

stack.push(3) [1,2,3]

x = stack.pop() [1,2] 3

x = stack.pop() [1] 2

x = stack.pop() [] 1

x = stack.pop() nil nil

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
27

