UNIT 14C

The Limits of Computing:
Uncomputable Functions
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Problem Classifications

Tractable Problems

— Problems that have reasonable, polynomial-
time solutions

Intractable Problems

— Problems that may have no reasonable,
polynomial-time solutions

Uncomputable Problems

— Problems that have no algorithms at all to
solve them
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RECALL FROM LAST LECTURE
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Decidability vs. Verifiability
P = the class of problems that can be decided (solved)
quickly

NP = the class of problems for which candidate
solutions can be verified quickly
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Two Possibilities

We do not know which of these possibilities is true.

NP

If P # NP, then some decision problems can’t be
solved in polynomial time.

If P = NP, then all computable problems can be
solved in polynomial time.
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Why is NP-completeness of Interest?

NP

\[:2
complete

Theorem: If any NP-complete problem is in P then all are and P = NP.

Most believe P # NP. So, in practice NP-completeness of a problem

prevents wasting time from trying to find a polynomial time solution for it.
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Today’s Lecture

We will look the Halting Problem that is a
canonical problem in the study of limits of
computing.

We will show using proof by contradiction that
it cannot be solved.

Along the way, we will think about
termination and programs that have some
form of self-reference.

The Barber Paradox

Suppose there is a town with just one barber, who is male. In
this town, every man keeps himself clean-shaven, and he does
so by doing exactly one of two things:

1. Shaving himself, or

2. Going to the barber.

Another way to state this is: The barber is a man in town who
shaves those and only those men in town who do not shave
themselves.

Who shaves the barber?

15110 Principles of Computing, Carnegie
Mellon University

5/1/2013



Program Termination

Can we determine if a program will terminate given
a valid input?
Example:
def mysteryl(x)

while (x = 1) do

X =X =2

end
end
— Does this algorithm terminate when x = 15?
— Does this algorithm terminate when x = 1107?
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Another Example

def mystery2(x)
while (x = 1) do

if x% 2 == then
X =x/2
else
X=3*x+1
end

end

— Does this algorithm terminate when x = 15?

— Does this algorithm terminate when x = 1107?

— Does this algorithm terminate for any positive x?
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The Halting Problem

* Does a universal program H exist that can take
any program P and any input / for program P
and determine if P terminates/halts when run
with input /?

* Alan Turing showed that such a universal
program H cannot exist.

— This is known as the Halting Problem.
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Proof by Contradiction (example)

Suppose you want to prove the proposition “One cannot get an
A in this course without doing the homeworks”.

1. You first assume the opposite: “One can get an A in this
course without doing the homeworks”.

2. From that assumption and using what you know about the
course you arrive at a conclusion, which is not true (e.g.
Homeworks are worth less than 10%).

3. Since you know that this conclusion is false (contradicts with
what is known), the initial assumption must be wrong.

“One can get an A in this course without doing the

homeworks”. Must be false
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Proof by Contradiction (first step)

*  Assume a program H exists that requires a program P
and an input /.

—  Hdetermines if program P will halt when
P is executed using input /.

)

H outputs YES
if P halts when run
with input |

H outputs NO
if P does not halt
when run with input |

*  We will show that H cannot exist by showing that if it
did exist we would get a logical contradiction.
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Programs Computing with Their
Own Representation

* A compileris a program that takes as its input
a program that needs to be translated from a
high-level language (e.g. Ruby) to a low-level
language (e.g. machine language).

— In general, a program can process any data, so it
can have a program as its input to process.

* Can a compiler compile itself? |YES!
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Proof (cont’d)

Let D be a program that takes input <M> where
<M> is a program description.

D asks the halt checker H what happens if M runs
with itself <M> as input?

If H answers that M will halt if it runs with itself as
input, then D goes into an infinite loop (and does not
halt).

If H answers that M will not halt if it runs with itself
as input, then D halts.
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Recall the Halt Checker

Assume a program H exists that requires a program P
and an input /.

—  Hdetermines if program P will halt when
P is executed using input /.

P)

H outputs YES
if P halts when run
with input |

H outputs NO
if P does not halt
when run with input |
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How to Construct D

DI\, 2

\Y

M

D asks H what happens if we run program M on with input <M> .
Loops if it says yes.
Stops and returns OK if it says no.
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D gets evil

* What happens if D tests itself?

— If H answers yes (D halts), then D goes into an
infinite loop and does not halt.

D (R,

\Y

©

15110 Principles of Computing, Carnegie
Mellon University

5/1/2013



Proof By Contradiction (last step)

contradiction

* What happens if D tests itself? /
— If D does not halt on <D>, then D halts on <D>.

— If D halts on <D>, then D does not halt on <D>.

©)

D |p @

©)

OK

19

Contradiction

No matter what H answers about D, D does the
opposite, so H can never answer the halting
problem for the specific program D.

—  Therefore, a universal halting checker H cannot exist.

We can never write a computer program that
determines if ANY program halts with ANY input.

It doesn’t matter how powerful the computer is.

It doesn’t matter how much time we devote to the
computation.
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Why Is Halting Problem Special?

* One of the first problems to be shown to be
noncomputable (i.e. undecidable,
unsolveable)

* A problem can be shown to be uncomputable
by reducing the halting problem into that
problem
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Do We Give up on Uncomputable
Problems

* Uncomputable (undecidable, unsolveable)
means there is no procedure (algorithm) that
1. Always terminates
2. Always give the correct answer
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Living with Uncomputable
Functions

* We should give up either one of these
conditions

— We usually prefer to give up 2 (correctness in all
cases)

— For example, a virus detection software cannot
detect if a program is a virus for all possible
programs. To be computable, they need to give up
correctness for some cases.
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What Should You Know?

* The fact that there are limits to what we can compute at all
and what we can compute efficiently.

— What do we mean when we call a problem
tractable/intractable?

— What do we mean when we call a problem solveable (i.e.
computable, decidable) vs. unsolveable (noncomputable,
undecidable)?

* What the question P vs. NP is about.

* Name some NP-complete problems and reason about the
work needed to solve them using brute-force algorithms.

* The fact that Halting Problem is unsolveable and that there
are many others that are unsolveable.
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