4/29/2013

UNIT 14B
The Limits of Computing: P and NP

Last Lecture

» Review of the big O notation

* Tractable vs. intractable decision problems
— Polynomial-time vs. super-polynomial

* Examples of intractable decision problems:
Money Puzzle, Traveling Salesman

4/29/2013

Today’s Lecture

* More examples of intractable problems

Introduce the class NP (nondeterministic
polynomial time)

The P vs. NP question

NP-completeness

Map Coloring

* Given a map of N territories, can the map be colored using
K colors such that no two adjacent territories are colored
with the same color?

adjacent

15110 Principles of Computing, Carnegie
Mellon University

Map Coloring

* Given a map of N territories, can the map be colored using
K colors such that no two adjacent territories are colored
with the same color?

not adjacent

15110 Principles of Computing, Carnegie
Mellon University

2-Coloring

* Given a map of N territories, can the map be colored using
2 colors such that no two adjacent territories are colored

with the same color? | Yes, only if the map contains no point that is the
junction of an odd number of territories. We can
find a yes or no answer quickly.

15110 Principles of Computing, Carnegie
Mellon University

4/29/2013

4/29/2013

4-Coloring

Given a map of N territories, can the map be
colored using 4 colors such that no two
adjacent territories are colored with the
same color?

Theorem: Answer is always yes for 4 colors.

3-coloring (analysis)

How many possible 3-colorings are there?

3-coloring (analysis)

* Given a map of N territories, can the map be

colored using 3 colors such that no two
adjacent territories are colored with the
same color?

— Pick a color for territory 1 (3 choices)

— Pick a color for territory 2 (3 choices)

3*3* .., *3=3N

 There are
colorings.

possible

15110 Principles of Computing, Carnegie
Mellon University

Verifiability

* No known tractable algorithm to decide,
however it is easy to verify a solution.

10

4/29/2013

Satisfiability

* Given a Boolean formula with N variables using the
operators AND, OR and NOT:

— Isthere an assignment of Boolean values for the
variables so that the formula is true (satisfied)?

Example: (X AND Y) OR (NOT Z AND X)
— Truth assignment: X = true, Y = true, C = false.
* How many assignments do we need to check
for N variables?
— Each symbol has 2 possibilities ...

2N

assignments

15110 Principles of Computing, Carnegie 11
Mellon University

The Big Picture

* Intractable problems are solvable if the amount of
data (N) that we’re processing is small.
* Butif Nis not small, then the amount of

computation grows exponentially and the solutions
quickly become intractable (i.e. out of our reach).

* Computers can solve these problems if N is not small,
but it will take far too long for the result to be

generated.
— We would be long dead
before the result is computed.

15110 Principles of Computing, Carnegie 12
Mellon University

4/29/2013

Decision Problems

* We have seen four examples of decision problems
with simple brute-force algorithms that are
intractable.

— The Monkey Puzzle O(N!)
— Traveling Salesperson O(N!)
— Map Coloring 0o(3N)
— Satisfiability o(2N)

15110 Principles of Computing, Carnegie
Mellon University

Are These Problems Tractable?

* For any one of these problems, is there a single tractable
(polynomial) algorithm to solve any instance of the problem?

Haven’t been found so far.

* Possible reasons:
— These problems have undiscovered polynomial-time solutions.
— These problems are intrinsically difficult — we cannot hope to find
polynomial solutions.
* Important discovery: Complexities of some of these
problems are linked. If we can solve one we can solve the
other problems in that class.

4/29/2013

P and NP

* The class P consists of all those decision problems
that can be solved on a deterministic sequential
machine in an amount of time that is polynomial in
the size of the input ‘ Polynomial decidability ‘

* The class NP consists of all those decision problems
whose positive solutions can be verified in
polynomial time given the right information, or
equivalently, whose solution can be found in
polynomial time on a non-deterministic machine.

from Wikipedia ‘ Polynomial verifiability {

15110 Principles of Computing, Carnegie

15
Mellon University

Decidability vs. Verifiability
P = the class of problems that can be decided (solved)
quickly

NP = the class of problems for which candidate
solutions can be verified quickly

15110 Principles of Computing, Carnegie
Mellon University

4/29/2013

Example

Finding the Minimum in an Array

Verifiable in polynomial time? YES

Solvable in polynomial time? YES
* Map Coloring

Verifiable in polynomial time? YES

Solvable in polynomial time?

If a problem is in P, it must also be in NP.

If a problem isin NP, is it also in P?

15110 Principles of Computing, Carnegie

17
Mellon University

Two Possibilities

NP

D

If P # NP, then some decision problems can’t be
solved in polynomial time.

If P = NP, then all computable problems can be
solved in polynomial time.

The Clay Mathematics Institute is offering a $1M prize ld
for the first person to prove P = NP or P # NP. 3

(http://www.claymath.org/millennium/P_vs_NP/)

15110 Principles of Computing, Carnegie
Mellon University

4/29/2013

4/29/2013

Watch out, Homer!

15110 Principles of Computing, Carnegie

19
Mellon University

NP-Complete Problems

* An important advance in the P vs. NP question
was the discovery of a class of problems in NP
whose complexity is related to the whole class
[Cook and Levin, ‘70]: if one of these problems
isin Pthen NP =P.

15110 Principles of Computing, Carnegie

20
Mellon University

10

Reductions

* Consider 2 problems A and B: Suppose we are trying to solve
A and have a decision algorithm for B.

yes
instance of - /
instance of

problem A yes
reduction problem B

> algorithm H decision algorithm for B S

no) \

no

* Reduction algorithm should be polynomial time and the
reduction should be such that A and B give the same result in
all cases

21

NP-completeness

* A problem A is NP-complete if
—Aisin NP
— Every other problem in NP is polynomial time

reducible to A (there is an efficient way to
transform each problem in NP to A).

22

4/29/2013

11

4/29/2013

NP-Complete

* The class NP-Complete consists of all those problems
in NP that are least likely to be in P.
— Monkey puzzle, Traveling salesperson, map coloring, and
satisfiability are all in NP-Complete.
e Every problem in NP-Complete can be transformed to
another problem in NP-Complete.
— If there were some way to solve one of these problems in

polynomial time, we should be able to solve all of these
problems in polynomial time.

15110 Principles of Computing, Carnegie
Mellon University

Example: Reduction

* A Boolean formula is in conjunctive normal form, called a
cnf-formula if it comprises several clauses connected
with ANDs. Following is a 3cnf-formula (each clause has 3
literals):

(X OR X OR Y) AND ((NOT X) OR (NOT X2) OR NOT Y)) AND (NOT X OR Y OR'Y)

* A k-clique in a graph is a subgraph with k nodes wherein
every two nodes are connected by an edge.

* We can show that satisfiability of a 3cnf-formula with k
clauses can be reduced to finding a k-clique in a “related”

undirected graph, which is constructed following certain
rules

15110 Principles of Computing, Carnegie

24
Mellon University

12

Example: Reduction (cont’d)

* Reducing 3SAT to Clique:

— Organize nodes into k groups of size 3 where each
such group corresponds to a clause in the
associated clause (use literals as labels of nodes)

— No edge between nodes in the same group

— No edge between two nodes with contradictory
labels

15110 Principles of Computing, Carnegie

. . 25
Mellon Universi ity

Example: Reduction (cont’d)

(XOR X ORY)AND ((NOT X) OR (NOT Y) OR NOT Y)) AND (NOT X ORY ORY)

Clause 1 Clause 2 Clause 3 .

4/29/2013

13

Example: Reduction (cont’d)

(X OR X OR Y) AND ((NOT X) OR (NOT Y) OR NOT Y)) AND (NOT X OR Y OR Y)

Clause 1 Clause 2 Clause 3 .

Why is NP-completeness of Interest?
NP

NP-
complete @

Theorem: If any NP-complete problem is in P then all are and P = NP.

Most believe P # NP. So, in practice NP-completeness of a problem
prevents wasting time from trying to find a polynomial time solution for it.

28

4/29/2013

14

NP-completeness in Practice

* Thousands of problems have been proved NP-
complete.

* If you have a problem that is in NP, and you
don’t know a polynomial time algorithm for it,
it may be reasonable to assume (prove) that it
is NP-complete until proved otherwise.

— E.g. many optimization problems in industry.

What’s Next?

e Are all computational problems solvable by
computer?
— NO!
There are some that we can’t solve no matter how

much time we give the computer, no matter how
powerful the computer is.

15110 Principles of Computing, Carnegie
Mellon University

4/29/2013

15

