4/17/2013

UNIT 13B

Al: Natural Language Processing

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Announcement (1)

e Exam on Wednesday April 24

— Covered topics: Randomness, Concurrency,
Internet, Simulation, Al
2:30 Exam: Sections A, B, C, D, E go to Rashid (GHC
4401) and Sections F, G go to PH 125C.
3:30 Exam: Sections H, |, J, K, L, M, N all go to
Rashid (GHC 4401).
Bring your CMU id!

e Exam review at Sunday office hours (6-8pm)
and (8-10pm).

4/17/2013

The Turing Test

e Turing publishes Computing Machinery
and Intelligence in 1950.

e Describes a test (now called the Turing Test) to
determine whether a computer can be called
intelligent.

‘ | A machine is considered
= intelligent if an interrogator
| &= cannot tell if a human or a
computer is answering a
\ ’ set of questions using

typewritten responses.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Turing’s Prediction

* “I believe that in about fifty years time it will
be possible to program computers ... to make
them play the imitation game so well that an
average interrogator will not have more than
70 percent chance of making the identification
after five minutes of questioning.”

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Natural Language Processing

* Natural language processing involves the interactions
between a computer and a human via spoken (or
written) language.

* ELIZA

— One of the first programs to build a conversation between
a human and a computer, created by Joseph Weizenbaum
in 1966.

— Computer responses were created based on scripts.

— Most famous example was DOCTOR which simulated a
Rogerian psychotherapist.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

ELIZA in Popular Culture

* You can also repeatedly tell Siri "tell me a
story." Eventually, she will tell you a story
about how she was chosen to work for Apple
Inc. and mentions ELIZA in the story. You can
even ask about ELIZA to Siri and she will
respond talking about ELIZA.

Source: Wikipedia

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

4/17/2013

Rubylabs Eliza: A Sample
Conversation

P> Eliza.run

ow do you do. Please tell me your problem.

I want a break from 15110.

: Why do you want a break from 151107

: Because it takes a lot of time to do the homeworks.

: Is that the real reason?

: Maybe I discovered that I don't like computers so much.
: Do computers worry you?

: They worry me when I have to program them.

: You say 'They worry you when you have to program them'?
: Yes.

: You seem quite positive.

: Yes I am. Programming can be very tricky.

: Can you elaborate on that?

: You have to be very careful about everything.

: We were discussing you, not me.

: You got me wrong.

: Why de you think I got you?

: You did it again.

: Oh, I did it again?

H:
C
H
c
H
C
H
c
H
C
H
c
H
C
H
c
H
C

ELIZA

H: My father wouldn’t buy me a puppy.
C: Tell me more about your family.
H: 1 am sad | never got a puppy.

C: Can you explain what made you sad you
never got a puppy?

H: 1 am sad we never had a chance to play fetch.

C: I am sorry to hear you are sad we never had a
chance to play fetch.

4/17/2013

Applying rules to Input Sentences

e Simplest type of rule: recognize keywords and
reply with one of several predefined
responses for that word.

e Then how to look for keywords?

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Searching a String

>> s = “My dog ate the caterpillar.”
=> “My dog ate the caterpillar.”

>> s_include?(““dog™)

= true

>> s_include?(““cat™)

=> true

>> s_include?(“Caterpillar™)

=> false

15110 Principles of Computing, Carnegie

10
Mellon University - CORTINA

4/17/2013

Regular Expressions

* Aregular expression is a rule that describes the
format required for a specific string.

>> s = “how now browner cow ow”
=> “how now browner cow ow”
>> r = /.ow/

r is aregular expression that says
=> /.ow/ match any string consisting of

3 characters, where the first character

is anything and the next 2 characters

are ‘0’ and ‘w’ exactly

15110 Principles of Computing, Carnegie

11
Mellon University - CORTINA

Iteration with a Regular Expression

e Scan scans through the string looking for
anything that matches the regular expression
passed to it.

>> s = “how now browner cow ow”

=> “how now browner cow ow”

>>r = /.ow/

= /.ow/

>> s.scan(r)

=> [*how”, “now”, “row”, “cow”, “ ow’]

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

4/17/2013

Examples

Syntax Semantics

Match any single character
_* Match any number of characters

x|yl z Match x or y or z

Specific syntax and semantics may vary depending on the programming language,

implementation, or library.

Regular Expressions in Practice
e Editors
— Searching/replacing text

— Syntax highlighting

* Query languages

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

4/17/2013

Rubylabs: Pattern include

ElizaLab

e Asentence Pattern is a mapping from a
regular expression to a set of 1 or more

responses. creates a regular expression
. ExampIE: based on the first argument

>> pl = Pattern.new(*dog”,
[“Tell me more about your pet”,
“Go on’"]

=> dog: [“Tell me more about your
pet”, “Go on’’]

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

More about Patterns

* The apply method tries to match an input sentence
to a regular expression. If it can, it returns one of
supplied response strings.

>> pl.apply(“l love my dog.”)

=> “Tell me more about your pet.”

>> pl.apply(“My dog is really smart.”)

=> “Go on.”

>> pl.apply(“Much smarter than my cat.”)

= nil

pl = Pattern.new(“dog”,

[“Tell me more about your pet”,“Go on’]

)

4/17/2013

Groups

We can specify a group so that any member will

cause a match during a scan.
>> p2 = Pattern.new(““(cat|dog]|bird)”,

[“Tell me more about your pet”, “Go on’’]

>> p2.apply(“My dog is smelly.”)
=> “Go on.”

>> p2.apply(“My cat ate my bird.”)
=> “Tell me more about your pet.”
>> p2.apply(*“l miss Polly a lot.”)
=> nil

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

17

Placeholders

e We can extract part of the input sentence to use

>>
>>
>>
>>

=>

=>

in the response.
p = Pattern.new(“(cat]dog]bird)’)

p.add_response(“Tell me more about the $17)

p.add_response(“A $1? Interesting.”)
p.-apply(**‘A dog ate my homework.’”)
“Tell me more about the dog.”
p.apply(*‘My cat ate my bird.”)

“A cat? Interesting.”

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

4/17/2013

Placeholders (cont’d)

>> p = Pattern.new(*“l (like]love|hate) my
(cat|]dog|bird)”
>> p.add_response(“Why do you $1 your $27?7")

>> p.add_response(“Tell me more about your $27°)

>> p.apply(*‘l like my dog.”)

=> “Why do you like your dog?”

>> p.apply(*‘l hate my cat.”)

=> “Tell me more about your cat.”

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Wildcards

e We can use a wildcard symbol (.*) to match any

number of characters.

>> p = Pattern.new(“l am afraid of (.*)”)

>> p.add_response(“Why are you afraid of $1?”)

>> p.apply(*“I am afraid of ghosts™)
=> “Why are you afraid of ghosts?”
>> p.apply(*‘l am afraid of 151107)
=> “Why are you afraid of 151107~

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

20

4/17/2013

10

A Note About Pattern

e Pattern takes a string and converts it to a regular
expression, adding some special characters.

>>
>>
>>
>>
>>
>>

P
P
p-
P
P

= Pattern.new(“dog’)

regexp => /\bdog\b/i

= Pattern.new(“l like .*”)

regexp => /\bl like (.*)/1
= Pattern.new(*“.eat™)

regexp => /_.eat\b/1

\b word boundary
i ignore case

15110 Principles of Computing, Carnegie

21
Mellon University - CORTINA

Postprocessing

* To make things more realistic, we can replace
personal pronouns with their opposites.

>>

>>

=>

=>

p = Pattern.new(*“l am (.*)”,
[“Are you really $1?7°])

p-apply(*l am near my car”)

“Are you really near my car?”
p-apply(*I am annoyed at you™)
“Are you really annoyed at you?”

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

4/17/2013

11

Postprocessing (cont’d)

An associative array

Eliza.post[“my”] = “your” likeweusedin
Eliza_post[snyou71] — ‘sme11/ Huffman trees.

Eliza.post

{“my” => “your”, “you” => “me” }

p-apply(*“l am near my car.”)

“Are you really near your car?”
p-apply(*“l am annoyed at you.””)

“Are you really annoyed at me?”
p-apply(*l am sad, my my my.”)

"Are you really sad, your your your?"

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Preprocessing

* Preprocessing is used to transform part of a
sentence before pattern matching is performed.

p = Pattern.new(*“l am afraid of (.*)”)
p.add_response(“Why are you afraid of $1?7)
p-apply(*““I’m afraid of ghosts™)

nil

Eliza.pre[“I°’m”] = “1 am”

p-apply(*““1’m afraid of ghosts™)

“Why are you afraid of ghosts?”

15110 Principles of Computing, Carnegie

24
Mellon University - CORTINA

4/17/2013

12

Algorithm for a Conversation

1. Perform any preprocessing on the sentence.
2. Break the sentence into words.
3. If thereis a rule for a word, add the rule to a

priority queue.

4. Try the rules in order of decreasing priority.

. If arule applies to the input sentence, apply
postprocessing rules to placeholder variables
and return the response.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Priority Queues (Reminder)

A priority queue (PQ) is like an array that is sorted.
pg = PriorityQueue.new

=> [1

To add element into the priority queue in its correct
position, we use the << operator:

pg << "‘peach"

pg << "apple"

pg << "banana’

=> ["apple’, "banana’™, "peach]

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

4/17/2013

13

4/17/2013

Priority Queues (cont’d)

. To remove the first element from the priority queue, we
will use the shift method:
fruitl = pqg.shift
=> "apple"
Pq
=> ["'banana', "peach']
fruit2 = pqg.shift
=> "panana"

Pqg
=> ["peach™]

Exercise

Try to build a conversation involving computers.

>> Eliza.rule_for("computer”
=> [50] --> [
/(computer|machine)s?/
"Do $1s worry you?”
“"Why do you mention $1s?"

“"What do you think $1s have to do with your problem?”
"Don't you think $1s can help people?”

“What about $1s worries you?"

“"What do you think about $1s?"

14

Eliza and the Turing Test

e Human (natural) language is very complex.

“You said | wouldn’t be afraid of horses

if | visited a state fair, but when | was there
| was chased by a pig, and now I’m having
nightmares about bacon.”

Natural language processors (NLPs) must use
parsers to break a sentence down into its
constituent parts (noun, verb, etc.) to
determine an appropriate response.

Eliza and the Turing Test

Human (natural) language is very complex.

“The lions were lying down in the grass.”
A: Go on.

“They were quiet”
A: Why were the lions quiet?

Natural language processors (NLPs) must have
memory to associate words (e.g. “they”) to
words from previous sentences.

4/17/2013

15

Eliza and the Turing Test

e Human (natural) language is very complex.

“The elephant was huge.”
A: How big was it?

“The cat fell into the well.”
A: Was it able to get out?

NLPs must use semantics to assign meaning to
certain phrases in order to generate
appropriate responses.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Eliza and the Turing Test

Human (natural) language is very complex.

“The dog ran across the backyard while |
waited on my patio.”

A: What happened when the dog reached the
patio?

NLPs must establish inferences to add
information to sentences that is not given but
is assumed.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

4/17/2013

16

Successful Chatbots
e Cleverbot by Rollo Carpenter.
* Since launching on the web in 1997, the

number of conversations has exceeded 65
million.

e Cleverbot participated in a formal Turing Test
in 2011. Out of the 334 votes cast, Cleverbot
was judged to be 59.3% human.

Check out http://www.cleverbot.com/

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Machile Learning

* Cleverbot learns from a growing database of
20+ million online conversations to talk with
anyone who goes to its website.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

4/17/2013

17

Conclusions

* Predictions of Turing and others that natural
language processing would be well-
established by 2000 were optimistic.

e Some notable achievements: parsing, NLP
interfaces such as in airline reservations,

banks etc.

e Corpus linguistics and machine learning hold

promise.

4/17/2013

18

