UNIT 12A

Simulation: Basics, Example

Simulation

- The imitative representation of the functioning of one system or process by means of the functioning of another [e. g., a computer program]. (Merriam Webster)
- In what contexts do we use simulation?
 - Performance optimization, safety engineering, testing of new technologies
 - Providing lifelike experiences in training, education, games
 - Gaining a better understanding of natural and human systems

This Lecture

Simulation as an enabler for computational science

Thought process that goes into developing simulations

Modeling

 The act of simulating something requires that a model be developed first.

 The model represents the system itself, whereas the simulation represents the operation of the system over time.

Computational Models

- Physical models: small-replicas
 - May not exist, may be unsafe to work with, expensive to build and modify.
 - Some change too slowly over time.
- Computational models deal with these issues better.
- Computational sciences use computational models as the basis of obtaining scientific knowledge.

Computational Science

- Unifies
 - Modeling, algorithms, simulations
 - Computing environment developed to solve science, engineering, medicine, and humanities problems
- Helps explain and predict phenomena using a mechanistic view

Abstraction

- In building models a major issue is to achieve a certain level of accuracy while keeping the complexity manageable
 - Identify factors that are the most relevant to the functioning of the system.

Stochastic Components

- Parts of the system may be stochastic (may exhibit random behavior).
 - Use statistical approximations

Large Scale Simulations

- Computing power of today enables large scale simulations. For example,
 - Department of Defense: Battle simulations
 - National Center for Atmospheric Research : 1,000 year of climactic changes
 - Blue Brain Project at EPFL to reverse engineer the human brain

http://www.youtube.com/watch?v=ySgmZOTkQA8

A Breakthrough in Computational Biology

A whole-cell computational model for Mycoplasma genitalium (the fewest number of genes any living organism has) by Jonathan Karr at Stanford 2012

www.stanford.edu/~jkarr/wholecell-news.html

Example from Public Health Domain

 Use of modeling and simulation for disease spread

https://www.youtube.com/watch?v=nZxXqWM8nP4

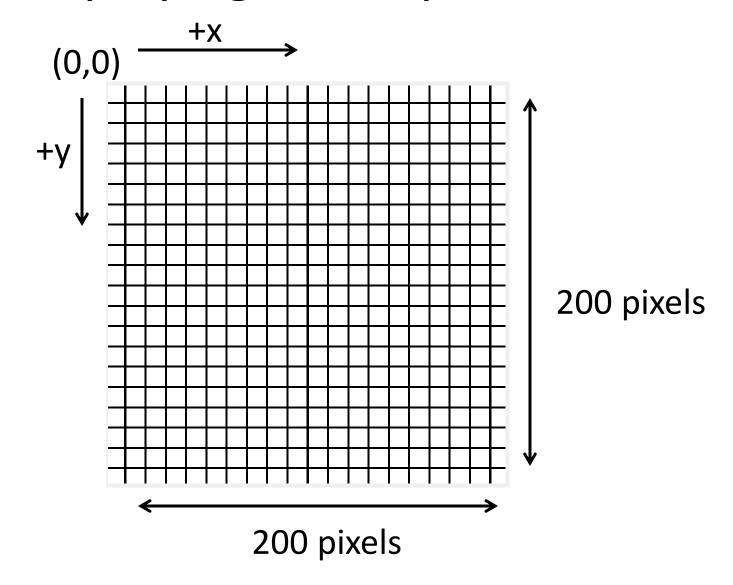
Example from Public Health Domain

Texas Pandemic Flu Toolkit

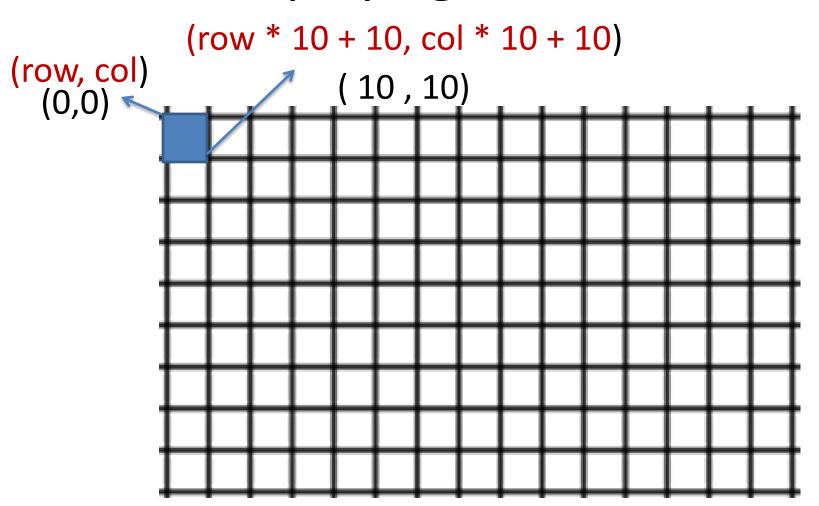
https://www.youtube.com/watch?v=0Q7zBk-PpRc

Example: Flu Virus Simulation

 Goal: Develop a simple graphical simulation that shows how disease spreads through a population.

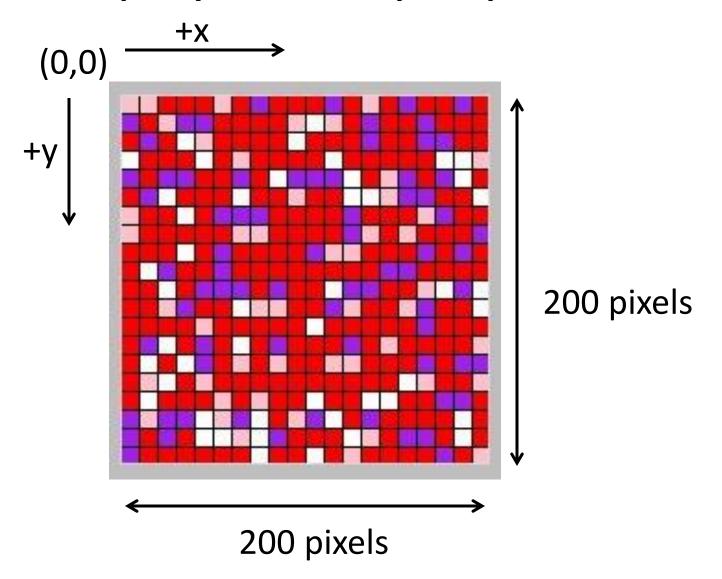

Model Assumptions

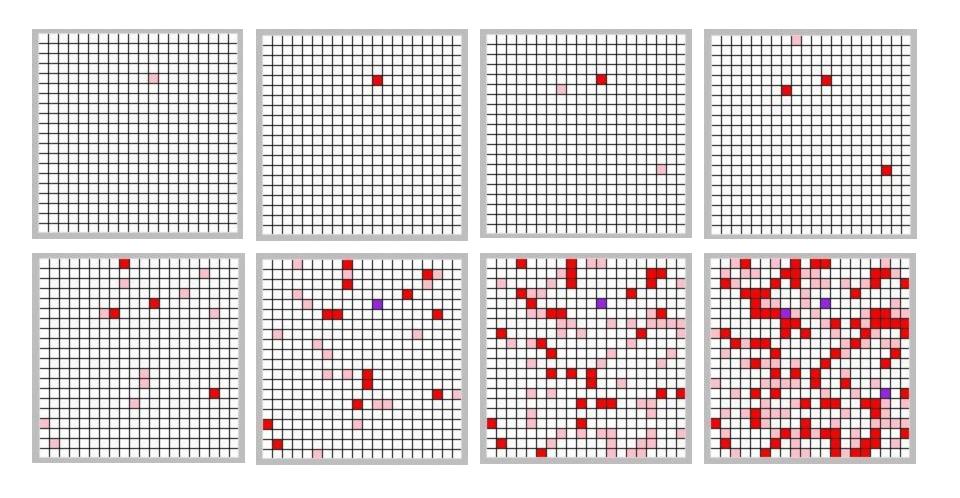
- A person starts off as healthy.
- Each day, a healthy person comes in contact with 4 random people. If any of those random people is contagious, then the healthy person becomes infected.
- It takes one day for the infected person to become contagious.
- After a person has been contagious for 4 days, then the person is non-contagious and cannot spread the virus nor can the person get the virus again due to immunity.


Data Abstractions

- Population
- Person
- Health state of a person

Displaying the Population


Displaying One Person


Health States

0	white	healthy
1	pink	infected
2	red	contagious (day 1)
3	red	contagious (day 2)
4	red	contagious (day 3)
5	red	contagious (day 4)
6	purple	immune (non-contagious)

Display of 400 people

Graphical Simulation

Displaying the matrix

```
def display(matrix)
  for row in 0..matrix.length-1 do
    for col in 0..matrix[row].length-1 do
     person = matrix[row][col]
      if person == 0  #healthy
        color = "white"
     elsif person == 1 #infected
        color = "pink"
     elsif person >= 2 and person <= 5 #contagious</pre>
        color = "red"
      else #non-contagious or wrong input
        color = "purple"
      end
     Canvas::Rectangle.new(col*10, row*10, col*10+10, row*10+10,
:fill => color, :outline => "black")
   end
 end
end
```

Testing display

```
def test display()
  # create a canvas of size 200 X 200
  Canvas.init(200, 200, "Testing Display")
  # initialize matrix a randomly
  a = Array.new(20)
  for i in 0..19 do
    a[i] = Array.new(20)
    for j in 0..19 do
      a[i][j] = rand(7)
    end
  end
  # display the matrix using your display function
  # display(a)
end
```

Checking Health State

```
def immune?(matrix, i, j)
                                  def infected?(matrix, i, j)
  if matrix[i][j] == 6 then
                                    if matrix[i][j] == 1 then
    return true
                                      return true
  else
                                    else
   return false
                                     return false
  end
                                   end
end
                                  end
def contagious?(matrix, i, j)
                                  def healthy?(matrix, i, j)
  if matrix[i][j] >= 2 and
                                    if matrix[i][j] == 0 then
matrix[i][j] \le 5 then
                                      return true
   return true
                                    else
  else
                                     return false
   return false
                                    end
  end
                                  end
end
```

Updating the matrix

```
def update(matrix)
  #create new matrix, initialized to all zeroes
  newmatrix = Array.new(20)
  for i in 0..19 do
    newmatrix[i] = Array.new(20)
    for j in 0..19 do
       newmatrix[i][j] = 0
    end
end
```

```
#create next day
  for i in 0..19 do
    for j in 0..19 do
      if immune?(matrix, i, j)
        newmatrix[i][j] = 6
      elsif infected?(matrix, i, j) or contagious?(matrix, i, j)
        newmatrix[i][j] = matrix[i][j] + 1
      elsif healthy?(matrix, i, j)
        for k in 1..4 do  # repeat 4 times
          if contagious? (matrix, rand(20), rand(20)) then
            newmatrix[i][j] = 1
          end
        end
      end
    end
  end
  return newmatrix
end
```

```
def test update()
  # create a canvas of size 200 X 200
  Canvas.init(200, 200, "Testing Update")
  # initialize matrix a to all healthy individuals
  a = Array.new(20)
  for i in 0..19 do
    a[i] = Array.new(20)
    for j in 0..19 do
      a[i][j] = 0
    end
  end
  # infect one random person
  a[rand(20)][rand(20)] = 1
  display(a)
  sleep(2)
  # run the simulation for 10 "days"
  for day in 1..10 do
    a = update(a)
    display(a)
    sleep(2)
  end
end
```

What if Our Model Changes?

• If a healthy person contacts a contagious person, she gets sick 40% of the time.

```
if contagious?(matrix, rand(20), rand(20))
         and rand(100) < 40 then
        newmatrix[i][j] = 1
end</pre>
```

What if Our Model Changes?

 If a healthy person has at least one contagious neighbor.

Neighbors

```
cell = matrix[i][j]
north = matrix[i-1][j]
                            NO!
if i == 0 then
                            YES!
 north = nil
else
 north = matrix[i-1][j]
```