

UNIT 11B
The Internet ctd...

Last Lecture

- Internet system
 - Hardware
 - protocols
 - IP addresses
- Servers
 - What do they do?
 - How to configure them?
- Emails
 - How they work

Questions?

- Who owns the internet?
- What is the purpose of a router?
- Does a router knows you are sending email or a pciture?
- How does internet handles multiple size files?
- Is the internet a circuit-switch system like the telephone system?

Internet as a packet switched system

- Design internet as a packet switched system
- Capacity of the internet is only limited by data traffic
- Limit the size of a packet to n bytes (n<1500)
- Packets don't have to arrive in sequence or at the same time or even the same route

Internet as a system

Core elements and edge nodes

Domain Name servers

- The service that ties domain names to IP addresses
 - <u>www.cmu.edu</u> (128.2.42.52)
 - www.google.com (173.194.75.147)

Network Address Translation (NAT)

Passing packets

Routing messages

- Routers do not know anything about the packets they are passing
- Routers can check the integrity of a packet by testing for errors in the packet
 - Missing bits
 - What can router do if it detects an error?
- Routers can also "buffer" packets
- Packets are formatted according to Internet Protocol (IP)

Protocols

Protocols

- Agreement between communicating parties
 - Web (HTTP, SSL)
 - Email (SMTP, POP3, IMAP)
 - File Transfer (FTP)
- protocols
 - define format
 - order of messages sent and received among network entities
 - actions taken on messages receipt

Quiz

• Who controls the internet?

Can anyone join internet?

• Is it possible that an email message can get lost?

Maintaining Reliability

- Use a higher level protocol to deliver messages reliably
 - Individual packet delivery may be unreliable
- Transport Control Protocol (TCP)
 - Higher level protocol to assure reliability
- TCP/IP

Reliable Communication with TCP

- Suppose Alice and Bob are the TCP implementations of two computers.
 - Alice is asked to send a message to Bob.
 - Alice breaks the message into several packets.
 - Each packet includes parity information, so Bob can check it for accuracy.
 - Packets are sent via IP.
 - Bob receives the packets.
 - If Bob is missing a packet or receives a corrupt packet, he can request retransmission.
 - If the packet is OK, Bob sends an acknowledgement.
 - If Alice doesn't get an acknowledgement, she will retransmit.
 - Bob assembles the incoming packets in order and provides the message to the appropriate application.

Other protocols

- Live streaming of data
 - Video
 - VolP
- User Datagram Protocol (UDP)
 - a simple transmission model with a minimum of protocol mechanism
 - No "handshaking"
 - Error checking is not necessary or done by the application

quiz

Can entire internet fail for some reason?

Can your computer fail to send a message?

How web pages work

Hypertext Transfer Protocol(HTTP/S)

- Retrieves documents(in HTML and other formats) over TCP using port 80
- Can also send form data to the server
- Support multiple requests per connection
- HTTPS = HTTP + TSL/SSL (secure socket layer)

Example: Web page Delivery

- A Web page is identified by a Uniform Resource Locator(URL)
- protocol://host address/page
- An HTTP Request
 - http://www.cs.cmu.edu/~15110/index.html

Example: Web page Delivery

- 1. Web browser extracts the name of the machine and gets it translated to an IP address (e.g. 128.2.217.13)
- 2. Establishes a TCP connection to port 80 at 128.2.217.13
- Constructs a message
 GET /~15110/index.html HTTP/1.1
- 4. Sends the message to server using services of TCP/IP
- 5. Web server locates the file and send a response back to browser using services of TCP/IP
- 6. The connection is terminated.

Email protocols

 Email protocols governs the communication between mail servers and clients

SMTP

 user-level client mail applications typically use SMTP only for sending messages to a mail server for <u>relaying</u>

POP3

 allows email client software to retrieve email from a remote server

IMAP

 newer protocol and oriented toward a "connected" mode of operation

Internet architecture

Back to IP Addresses

IP Addresses (IPv4)

 Computers on the Internet are assigned an IP Address consisting of four numbers between 0 and 255 inclusive

____· ____· ____

Example: 128.2.13.163

- This means that each part of the address is an 8-bit value, and an IP address is 32 bits. Hence, it supports up to 2³² computers on the network at the same time.
- ISPs can reassign IP addresses dynamically.

IPv4 Address Assignment

- The original IPv4 had several classes of addresses that could be decomposed into a network and host part
 - Class A 0 + 7-bit network + 24-bit address
 Accommodates up to 2²⁴ unique IP addresses in a company or location.
 - Class B 10 + 14 bit network + 16-bit address
 Accommodates up to 2¹⁶ unique IP addresses in a company or location.
 - Class C 110 + 21-bit network + 8-bit address
 Accommodates up to 2⁸ unique IP addresses in a company or location.

IPv4 Address Assignment

- In 1993, the Internet switched to classless internet-domain routing.
- In this scheme, the network part is an arbitrary length prefix of the address, such as 10.10.1.32/27, which has a 27-bit network part and a 5-bit host part (so there can only be 32 machines on that network).

New IP (IPv6)

- IPv6 uses 128-bit addresses, which implies
 2¹²⁸ (3.4 X 10³⁸⁾ unique computer addresses, (4.8 * 10²⁸ addresses per person)
- Allows for many more devices (cell phones, video game machines, appliances, automobiles, etc.)
- Designed to deal with the approaching use of all available addresses in IPv4.
- IPv6 also follows classless routing, but the standard subnetwork size is 64-bits.

Questions?

Can entire internet fail on its weight?

What would be an alternate model?

How has internet changed humanity?
 Opportunity?

How do we define intelligence?

Bonus Slides

You will not be tested on these slides

Internet layers

Layering Abstractions

- It is often useful to divide large systems into layers
 - Higher layer uses a lower layer as a service
 - Lower layers are implemented independently from higher layers
 - Interface between two layers needs to be specified
- Example: Dice game uses roll

roll uses rand

rand uses some LCRG method

Open system interconnection

The Seven Layers of OSI

Source: Washington.edu

Link Layer

Physical Links

Link Layer Data Links

Network Layer

- The link layer enables us to transmit messages from node A to node B, only if these two are connected by a physical link.
- In networks other than LANs, majority of nodes are not directly connected.
- Network layer is responsible for delivering messages from their source to destination.
- Key functions:
 - Create a universal addressing scheme for all network nodes
 - Deliver messages between any two nodes in the network

Transport Layer

Internet Protocol (IP)

- Delivers packets to IP address
- Best effort delivery

Transport Control Protocol

- Creates a reliable bi-directional stream (source address/port and destination address/port)
 - · acknowledgements, resend, reassembly in correct order,
 - error detection
 - connection must be opened and closed
 - flow/congestion control

Transport Layer

