UNIT 10B
Concurrency: Pipelining

REVIEW: MULTI-TASKING,
MULTIPROCESSING, DEADLOCK

Concurrency

* Concurrency is the process of performing
more than one process at a time.

* Why do we need it?

— Some computations require concurrency by their nature:
for example, banking, airline seat reservation, process
control etc.

— Some computations can be sped up if we can figure out
how to decompose computation we can also speed-up
computing process.

Different Flavors

 Computing has many ways to implement
concurrency:

— Parallel processing (multiple processes, each process
on a single processor)

— Multitasking (multiple processes sharing a single
processor. Think of running many apps at the same
time. In fact only one of them is executed at a given
time point)

— Pipelining

— Distributed computing

Concurrency and Ruby

* |n this course, we only focus on writing
sequential programs.

* Newer versions of Ruby support concurrency
constructs such as threads.

A Ruby Multiprocessor Model

The processors (thread)
run independently.

The shared memory is
used for communication.

Only one processor at a
time may execute a line
of Ruby that touches the
shared memory. The
memory hardware makes
the others wait.

ProgramO

Private
memory0

Programl

Private
memoryl

15110 Principles of Computing, Carnegie

Mellon University

Shared Memory

We reason about concurrent executions using all possible

interleavings of the steps of sequential threads of execution.

S1
S2
S3
S1
S2
S3

S1
S2
S1
S3
S2
S3

S1
S1
S2
S2
S3
S3

S1
S1
S2
S2
S3
S3

S1
S1
S2
S2
S3
S3

S1
S1
S2
S3
S2
S3

Program 1

S1
S2
S3

S1
S2
S3

S1
S2
S1
S2
S3
S3

S1
S1
S2
S3
S2
S3

S1
S2
S1
S2
S3
S3

S1
S2
S1
S2
S3
S3

S1
S1
S2
S3
S2
S3

S1
S2
S1
S2
S3
S3

Program 2

S1
S1
S2
S3
S2
S3

S1
S1
S2
S2
S3
S3

S1
S2
S1
S3
S2
S3

S1
S1
S2
S2
S3
S3

S1
S1
S2
S2
S3
S3

S1
S1
S2
S2
S3
S3

S1
S1
S2
S2
S2
S2

S1
S2
S3
S1
S2
S3

Concurrent programming is hard.

* Only a tiny percentage of practicing
programmers can do it.

* |t requires art and mathematics.
— It’s like digital hardware design.
— It needs proofs.

* Conventional debugging doesn’t work.

— If you stop the program to observe, you change the
behavior.

— Testing is futile because the number of possible
execution sequences for the same input explodes.

Critical Section

A critical section is a section of computer

code that must only be executed by one
process or thread at a time.

Examples:
— A printer queue receiving a file to be printed
— Code to set a seat as reserved

— Web server that generates and returns a web
page showing current registration in course

Shared Computing Resources

memory
tape drives

disk drives

printers

communication ports

input devices (keyboard, mouse)

Deadlock

Deadlock is the condition when two or more
processes are all waiting for some shared
resource that other processes of the group
hold, causing all processes to wait forever
without proceeding.

Dining Philosopher’s Problem

Aristotle Plato

15110 Principles of Computing, Carnegie
Mellon University

12

The Dining Philosopher’s

Each philosopher thinks for a while, then picks up his
left fork, then picks up his right fork, then eats, then
puts down his left fork, then puts down his right fork,
thinks for a while...

— We assume here that each philosopher thinks and eats for
random times, and a philosopher cannot be interrupted
while he picks up or puts down a single fork.

Each fork models a "resource" on a computer
controlled by an OS.

Original problem proposed by Edsgar Dijkstra.

Dining Philosopher’s Problem

* There are N philosophers.
 Philosopher i does the following:

1. THINK N=4
2. Pick up fork i. Fork 3 - Fork 2
3. Pick up fork (i+1) modulo N. A °
4. EAT Foe— %
5. Put down fork i. g Ogi
6. Put down fork (i+1) modulo N\ Forko " Fork1
7. Goto step 1. NOTE: (i+1) moduloN=i+1, if0O<i<N-1
(i+1) modulo N =0, if I =N-1

15110 Principles of Computing, Carnegie

1
Mellon University 4

Dining Philosopher’s Problem

There are N philosophers.

Philosopher i does the following:

1
2
3
4.
5
6
7

. Go to step 1.

How can deadlock occur here?

15110 Principles of Computing, Carnegie
Mellon University

. THINK N=4

. Pick up fork i. Eork 3 R Fork 2

. Pick up fork (i+1) modulo N. S % 2 ‘_-*--'—*iqo -
EAT £ B J?‘":e‘z:g

. Put down fork i. N ¢ O%!'

. Put down fork (i+1) moduloN. Forko " Fork1

Removing the Deadlock

* Think about how to remove the deadlock. This
is a part of the assighment released today.

PIPELINING

Pipelining

Pipelining is similar to an assembly line.

— Instead of completing one computation before
starting another, each computation is split into
simpler sub-steps, and computations are started

15110 Principles of Computing, Carnegie
Mellon University

18

Laundry Without Pipelining

Washing, Drying and Ironing four loads of laundry.

WITHOUT

W b | | PIPELINING:

Washing (30 min) Drying (45 min) Ironing (15 min) 6 hr

s S

0 30 60 90 120 150 180 210 240 270 300 330 360 min.

15110 Principles of Computing, Carnegie

1
Mellon University ?

Laundry With Pipelining

Washing, Drying and Ironing four loads of laundry.

WITH

W D | | PIPELINING:

Washing (30 min) Drying (45 min) lroning (15 min) 3 hr 45 min

. LLLL

The length of the
pipeline depends
| on the length of
the longest step.

B

0 30 60 90 120 150 180 210 240 270 300 330 360 min.

15110 Principles of Computing, Carnegie

2
Mellon University 0

Pipelining in Computing

Fetch instruction from memory
Decode the instruction

Read data from registers
Execute the instruction

Write the result into a register

15110 Principles of Computing, Carnegie
Mellon University

21

Dealing with Dependencies

"Add the contents of R1 and R3
ADD R3, R1 <« and store the results in R3.”

ADD RS' R3 \ This instruction depends on the result
ADD RS, R7 of the previous instruction.

ADD R11, R10

What does this mean for pipelining?

Dealing with Dependencies

"Add the contents of R1 and R3
ADD R3, R1 <« and store the results in R3.”

ADD R5, R3 — This instruction depends on the result

ADD RS, R7 of the previous instruction. (This will
hold up the pipeline. We cannot do the
ADD Rl]—, R10 R step for the second instruction

before finishing the W step for the first
instruction.)

ADD R3, R1

Reorder the instructions to minimize
ADD R8; R7 the delay on the pipeline due to the
ADD Rll, R10 dependency, if possible.

ADD R5, R3

studentl

student2

student3

student4

student5

student6

student?7

student8

Matrix Multiplication

hw paper examl exam2 exam3 final
95 90 93 91 85 92
73 80 75 63 79 75
85 73 80 85 88 91
50 65 50 60 56 47
100 | 95 98 96 96 90
75 75 75 75 75 75
90 80 80 90 | 100 | 100
88 80 80 70 60 55

hw

paper

examl

exam?2

exam3

final

15110 Principles of Computing, Carnegie
Mellon University

weight

0.15

0.1

0.15

0.15

0.15

0.3

studentl

student2

student3

student4

student5

student6

student?

student8

average

24

Matrix Multiplication

0 + 95*0.15 + 90*0.1 + 93*0.15 + 91*0.15 + 85*0.15 + 92*0.3 = 91.2

hw paper examl exam2 exam3 final average
studentl | 95 90 93 91 85 92 weight ~ Studentl f 9] 2
student2 73 80 75 63 79 75 hw 0.15 student2

sudent3 | 85 | 73 | 80 | 85 | 88 | 91 vaper | 0.1 | students

student4 50 65 50 60 50 47 exami | 0.15 student4

students | 100 o5 08 96 96 90 exam2 | 0.15 student5

student6 75 75 75 75 75 75 exam3 | 0.15 student6

student? 90 80 80 90 100 100 final 0.3 student7

student8 88 80 80 70 60 55 student8

15110 Principles of Computing, Carnegie

2
Mellon University >

Matrix Multiplication

0+ 73*0.15 + 80*0.1 + 75*0.15 + 63*0.15 + 79*0.15 + 7/5*0.3 = 74.0

studentl

student2

student3

student4

student5

student6

student?7

student8

hw paper examl exam2 exam3 final
95 90 93 91 85 92
73 80 75 63 79 75
85 73 80 85 88 91
50 65 50 60 56 47
100 | 95 98 96 96 90
75 75 75 75 75 75
90 80 80 90 | 100 | 100
88 80 80 70 60 55

hw

paper

examl

exam?2

exam3

final

15110 Principles of Computing, Carnegie
Mellon University

weight

0.15

0.1

0.15

0.15

0.15

0.3

studentl

student2

student3

student4

student5

student6

student?

student8

average

91.2

74.0

26

Matrix Multiplication

0 + 85*0.15 + 73*0.1 + 80*0.15 + 85*0.15 + 88*0.15 + 91*0.3 = 85.3

studentl

student2

student3

student4

student5

student6

student?7

student8

hw paper examl exam2 exam3 final
95 90 93 91 85 92
73 80 75 63 79 75
85 73 80 85 88 91
50 65 50 60 56 47
100 | 95 98 96 96 90
75 75 75 75 75 75
90 80 80 90 | 100 | 100
88 80 80 70 60 55

hw

paper

examl

exam?2

exam3

final

15110 Principles of Computing, Carnegie
Mellon University

weight studentl
0.15 student2
0.1 student3

0.15 student4
0.15 student5
0.15 student6
0.3 student?

student8
....and so on...

average

91.2

74.0

85.3

27

studentl

student2

student3

student4

student5

student6

student?7

student8

Matrix Multiplication

If each multiply/add takes 1 time unit,
this non-pipelined matrix multiplication takes 48 time units.

hw paper examl exam2 exam3 final
95 90 93 91 85 92
73 80 75 63 79 75
85 73 80 85 88 91
50 65 50 60 56 47
100 | 95 98 96 96 90
75 75 75 75 75 75
90 80 80 90 | 100 | 100
88 80 80 70 60 55

hw

paper

examl

exam?2

exam3

final

15110 Principles of Computing, Carnegie
Mellon University

weight

0.15

0.1

0.15

0.15

0.15

0.3

studentl

student2

student3

student4

student5

student6

student?

student8

average

91.2

74.0

85.3

53.0

95.0

75.0

92.0

69.2

28

Faster Matrix Multiplication

using Pipelining

0.1
0.15| 0.1 | 0.15 0.15 | 0.3 average
il il il O Bl
0> R R R R R studentl
studentl ,T\ ,T\ ,T\ ,T\ ,T\ ,T\
student7
student7 KEY:
N
v
W—> > E=W+(N*S)
)
S

15110 Principles of Computing, Carnegie
Mellon University

29

Faster Matrix Multiplication

using Pipelining

0.15

0.15|0.15| 0.3

14.25

N
>

average

studentl

15110 Principles of Computing, Carnegie
Mellon University

KEY:

W

student?7

—> E=W+(N*S)

n—> <22

30

Faster Matrix Multiplication

using Pipelining

0.15(0.1 {0.15(0.15(0.15| 0.3
average
studentl
student?
KEY:
i
W—>1 >E=W+(N*S)
S

15110 Principles of Computing, Carnegie
Mellon University

31

Faster Matrix Multiplication

using Pipelining

0.15(0.1 {0.15(0.15(0.15| 0.3
average
studentl
student?
KEY:
i
W—>1 >E=W+(N*S)
S

15110 Principles of Computing, Carnegie
Mellon University

32

Faster Matrix Multiplication

using Pipelining

0.15(0.1 {0.15(0.15(0.15| 0.3
average
studentl
student?
KEY:
i
W—>1 >E=W+(N*S)
S

15110 Principles of Computing, Carnegie
Mellon University

33

Faster Matrix Multiplication

using Pipelining

0.15(0.1 {0.15(0.15(0.15| 0.3
average
. studentl
student3
student?
KEY:
i
W—> > E=W+(N*S)
S

15110 Principles of Computing, Carnegie
Mellon University

34

Faster Matrix Multiplication

using Pipelining

0.15| 0.1 {0.15]0.15|0.15| 0.3

v v

studentl

N
>

15110 Principles of Computing, Carnegie
Mellon University

KEY:

student3

student?7

n—> <22

average

—> E=W+(N*S)

35

Faster Matrix Multiplication

using Pipelining

0.15

0.15

0.15

0.3

v

\4

15110 Principles of Computing, Carnegie

Mellon University

KEY:

W

n—> <22

studentl

student3

student?7

average

91.2

—> E=W+(N*S)

36

Faster Matrix Multiplication

using Pipelining

0.15| 0.1 {0.15|0.15|0.15| 0.3

\L average
studentl | 91.2
74.0

student3

student7

KEY:
)

W—> —>E=W+(N*S)
15110 Principles of Computing, Carnegie l 37

Mellon University

Faster Matrix Multiplication

using Pipelining

0.15| 0.1 |0.15|0.15|0.15| 0.3and so on...
\L \L \l’ \L \L average
dentl
21.2 | 335 68.0 | 53.0 , Sudenit | 91.2
'T\ T T student2 | 74.0
80 90 student3 | 85.3
70 student4
60 100 student5
55
student7
KEY:
N student8
W= E=W+(N*S)
15110 Principles of Computing, Carnegie L -

Mellon University

Faster Matrix Multiplication

using Pipelining

0.15

01 |015|0.15|0.15| 0.3

\ 4

studentl

student2

student3

student4

student5

student?7

student8

average

91.2

74.0

85.3

53.0

95.0

75.0

92.0

69.2

If each multiply/add takes 1 time unit,

this pipelined matrix multiplication takes only 13 time units.
I

15110 Principles of Computing, Carnegie
Mellon University

39

Distributed Systems

e Adistributed system is an application that consists of
processes that

— execute on multiple computers connected through a
network, and

— cooperate to accomplish a task.

* Advantages
— Reconfigurable: add or rearrange new parts

— Geographically distributed: Low communication delays for
remote users

— Scalable: can add more processors as demand increases

Examples of Failures

* Failures happen all the time and distributed
systems must cope with it

— permanent network failures

— dropped messages

— between sender and receiver

— an individual computer breaks

— a process crashes or goes into an infinite loop

Can We Fix These Failures?

» Replication/Redundancy

* Using transaction logs to do recovery

— Transaction log is a history of actions executed by a
database management system to guarantee backup over
crashes or hardware failures.

Summary

e Concurrency means execution of multiple processes
at the same time. It may be implemented by
interleaving steps of processes on a single processor
or using multiple processors.

* Processes may interact and coordinate in complex
ways. Care must be taken when they share common
resources, to deal with race conditions, to avoid
deadlocks etc.

 We did not introduce any new programming
construct in this unit.

