
UNIT 10B
Concurrency: Pipelining

15110 Principles of Computing, Carnegie
Mellon University

1

REVIEW: MULTI-TASKING ,
MULTIPROCESSING, DEADLOCK

15110 Principles of Computing, Carnegie
Mellon University

2

Concurrency

• Concurrency is the process of performing
more than one process at a time.

• Why do we need it?

– Some computations require concurrency by their nature:
for example, banking , airline seat reservation, process
control etc.

– Some computations can be sped up if we can figure out
how to decompose computation we can also speed-up
computing process.

15110 Principles of Computing, Carnegie
Mellon University

3

Different Flavors

• Computing has many ways to implement
concurrency:

– Parallel processing (multiple processes, each process
on a single processor)

– Multitasking (multiple processes sharing a single
processor. Think of running many apps at the same
time. In fact only one of them is executed at a given
time point)

– Pipelining

– Distributed computing

4

Concurrency and Ruby

• In this course, we only focus on writing
sequential programs.

• Newer versions of Ruby support concurrency
constructs such as threads.

15110 Principles of Computing, Carnegie
Mellon University

5

A Ruby Multiprocessor Model

• The processors (thread)
run independently.

• The shared memory is
used for communication.

• Only one processor at a
time may execute a line
of Ruby that touches the
shared memory. The
memory hardware makes
the others wait.

Processor0

Private

memory0

Processor1

Shared Memory

Program0

Private

memory1

Program1

15110 Principles of Computing, Carnegie
Mellon University

6

We reason about concurrent executions using all possible

interleavings of the steps of sequential threads of execution.

7

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S1

S3

S2

S3

S1

S1

S2

S3

S2

S3

S1

S1

S2

S2

S3

S3

S1

S2

S1

S2

S3

S3

S1

S2

S1

S2

S3

S3

S1

S1

S2

S2

S3

S3

S1

S1

S2

S2

S3

S3

S1

S1

S2

S3

S2

S3

S1

S1

S2

S3

S2

S3

S1

S1

S2

S2

S3

S3

S1

S2

S3

S1

S2

S3

S1

S1

S2

S2

S3

S3

S1

S1

S2

S2

S3

S3

S1

S1

S2

S2

S2

S2

S1

S1

S2

S2

S3

S3

S1

S1

S2

S3

S2

S3

S1

S2

S1

S2

S3

S3

S1

S2

S1

S2

S3

S3

S1

S2

S1

S3

S2

S3

Program 1 Program 2

Concurrent programming is hard.

• Only a tiny percentage of practicing
programmers can do it.

• It requires art and mathematics.

– It’s like digital hardware design.

– It needs proofs.

• Conventional debugging doesn’t work.

– If you stop the program to observe, you change the
behavior.

– Testing is futile because the number of possible
execution sequences for the same input explodes.

8

Critical Section

• A critical section is a section of computer
code that must only be executed by one
process or thread at a time.

• Examples:

– A printer queue receiving a file to be printed

– Code to set a seat as reserved

– Web server that generates and returns a web
page showing current registration in course

15110 Principles of Computing, Carnegie

Mellon University
9

Shared Computing Resources

• memory

• tape drives

• disk drives

• printers

• communication ports

• input devices (keyboard, mouse)

15110 Principles of Computing, Carnegie
Mellon University

10

Deadlock

• Deadlock is the condition when two or more
processes are all waiting for some shared
resource that other processes of the group
hold, causing all processes to wait forever
without proceeding.

15110 Principles of Computing, Carnegie
Mellon University

11

Dining Philosopher’s Problem

15110 Principles of Computing, Carnegie
Mellon University

12

Aristotle Plato

Socrates

Homer

The Dining Philosopher’s

• Each philosopher thinks for a while, then picks up his
left fork, then picks up his right fork, then eats, then
puts down his left fork, then puts down his right fork,
thinks for a while...

– We assume here that each philosopher thinks and eats for
random times, and a philosopher cannot be interrupted
while he picks up or puts down a single fork.

• Each fork models a "resource" on a computer
controlled by an OS.

• Original problem proposed by Edsgar Dijkstra.

15110 Principles of Computing, Carnegie

Mellon University
13

Dining Philosopher’s Problem

• There are N philosophers.

• Philosopher i does the following:

1. THINK

2. Pick up fork i.

3. Pick up fork (i+1) modulo N.

4. EAT

5. Put down fork i.

6. Put down fork (i+1) modulo N.

7. Go to step 1.

15110 Principles of Computing, Carnegie

Mellon University
14

Fork 0 Fork 1

Fork 2 Fork 3

0

1

2

3

NOTE: (i+1) modulo N = i+1 , if 0 < i < N-1

 (i+1) modulo N = 0, if i = N-1

N=4

Dining Philosopher’s Problem

• There are N philosophers.

• Philosopher i does the following:

1. THINK

2. Pick up fork i.

3. Pick up fork (i+1) modulo N.

4. EAT

5. Put down fork i.

6. Put down fork (i+1) modulo N.

7. Go to step 1.

15110 Principles of Computing, Carnegie

Mellon University
15

Fork 0 Fork 1

Fork 2 Fork 3

0

1

2

3

How can deadlock occur here?

N=4

Removing the Deadlock

• Think about how to remove the deadlock. This
is a part of the assignment released today.

15110 Principles of Computing, Carnegie
Mellon University

16

PIPELINING

15110 Principles of Computing, Carnegie
Mellon University

17

Pipelining

• Pipelining is similar to an assembly line.

– Instead of completing one computation before
starting another, each computation is split into
simpler sub-steps, and computations are started
as others are in progress.

15110 Principles of Computing, Carnegie
Mellon University

18

Laundry Without Pipelining

15110 Principles of Computing, Carnegie
Mellon University

19

 0 30 60 90 120 150 180 210 240 270 300 330 360 min.

Washing, Drying and Ironing four loads of laundry.

W D I W D I W D I W D I

W D I

Washing (30 min) Drying (45 min) Ironing (15 min)

WITHOUT

PIPELINING:

6 hr

Laundry With Pipelining

15110 Principles of Computing, Carnegie
Mellon University

20

 0 30 60 90 120 150 180 210 240 270 300 330 360 min.

Washing, Drying and Ironing four loads of laundry.

W D I

W D I

W D I

W D I

W D I

Washing (30 min) Drying (45 min) Ironing (15 min)

WITH

PIPELINING:

3 hr 45 min

The length of the

pipeline depends

on the length of

the longest step.

Pipelining in Computing

• Fetch instruction from memory

• Decode the instruction

• Read data from registers

• Execute the instruction

• Write the result into a register

15110 Principles of Computing, Carnegie
Mellon University

21

F D R E W

F D R E W

F D R E W

F D R E W

Dealing with Dependencies

ADD R3, R1

ADD R5, R3

ADD R8, R7

ADD R11, R10

15110 Principles of Computing, Carnegie
Mellon University

22

This instruction depends on the result

of the previous instruction.

"Add the contents of R1 and R3

and store the results in R3.”

What does this mean for pipelining?

Dealing with Dependencies

ADD R3, R1

ADD R5, R3

ADD R8, R7

ADD R11, R10

ADD R3, R1

ADD R8, R7

ADD R11, R10

ADD R5, R3

15110 Principles of Computing, Carnegie

Mellon University
23

This instruction depends on the result

of the previous instruction. (This will

hold up the pipeline. We cannot do the

R step for the second instruction

before finishing the W step for the first

instruction.)

"Add the contents of R1 and R3

and store the results in R3.”

Reorder the instructions to minimize

the delay on the pipeline due to the

dependency, if possible.

Matrix Multiplication

15110 Principles of Computing, Carnegie
Mellon University

24

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1

student2

student3

student4

student5

student6

student7

student8

Matrix Multiplication

15110 Principles of Computing, Carnegie
Mellon University

25

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1 91.2

student2

student3

student4

student5

student6

student7

student8

0 + 95*0.15 + 90*0.1 + 93*0.15 + 91*0.15 + 85*0.15 + 92*0.3 = 91.2

Matrix Multiplication

15110 Principles of Computing, Carnegie
Mellon University

26

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1 91.2

student2 74.0

student3

student4

student5

student6

student7

student8

0 + 73*0.15 + 80*0.1 + 75*0.15 + 63*0.15 + 79*0.15 + 75*0.3 = 74.0

Matrix Multiplication

15110 Principles of Computing, Carnegie
Mellon University

27

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1 91.2

student2 74.0

student3 85.3

student4

student5

student6

student7

student8

0 + 85*0.15 + 73*0.1 + 80*0.15 + 85*0.15 + 88*0.15 + 91*0.3 = 85.3

....and so on...

Matrix Multiplication

15110 Principles of Computing, Carnegie
Mellon University

28

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1 91.2

student2 74.0

student3 85.3

student4 53.0

student5 95.0

student6 75.0

student7 92.0

student8 69.2

If each multiply/add takes 1 time unit,

this non-pipelined matrix multiplication takes 48 time units.

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University

29

95

73 90

85 80 93

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

0.15 0.1 0.15
0.1

5
0.15 0.3 average

student1

student2

student3

student4

student5

Student6

student7

student8

student1

student2

student3

student4

student5

student6

student7

student8

0

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University

30

73 90

85 80 93

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

14.25 0

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University

31

85 80 93

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

10.95 23.25 0

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University

32

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

12.75 18.95 37.2 0

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University

33

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

7.5 20.05 30.2 50.85 0

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University

34

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

15.0 14.0 32.05 39.65 63.6 0

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University

35

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

11.25 24.5 21.5 44.8 51.5 91.2 0

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University

36

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1 91.2

student2

student3

student4

student5

student6

student7

student8

13.5 18.75 39.2 30.5 58.0 74.0 0

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University

37

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1 91.2

student2 74.0

student3

student4

student5

student6

student7

student8

13.2 21.5 30.0 53.6 38.9 85.3 0

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University

38

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1 91.2

student2 74.0

student3 85.3

student4

student5

student6

student7

student8

21.2 33.5 41.25 68.0 53.0 0

W

N

S

E=W+(N*S)

KEY:

....and so on...

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University

39

0.15 0.1 0.15 0.15 0.15 0.3
average

student1 91.2

student2 74.0

student3 85.3

student4 53.0

student5 95.0

student6 75.0

student7 92.0

student8 69.2

0

If each multiply/add takes 1 time unit,

this pipelined matrix multiplication takes only 13 time units.

Distributed Systems

• A distributed system is an application that consists of
processes that

– execute on multiple computers connected through a
network, and

– cooperate to accomplish a task.

• Advantages

– Reconfigurable: add or rearrange new parts

– Geographically distributed: Low communication delays for

remote users

– Scalable: can add more processors as demand increases

15110 Principles of Computing, Carnegie
Mellon University

40

Examples of Failures

• Failures happen all the time and distributed
systems must cope with it

– permanent network failures

– dropped messages

– between sender and receiver

– an individual computer breaks

– a process crashes or goes into an infinite loop

15110 Principles of Computing, Carnegie
Mellon University

41

Can We Fix These Failures?

• Replication/Redundancy

• Using transaction logs to do recovery

– Transaction log is a history of actions executed by a
database management system to guarantee backup over
crashes or hardware failures.

15110 Principles of Computing, Carnegie
Mellon University

42

Summary
• Concurrency means execution of multiple processes

at the same time. It may be implemented by
interleaving steps of processes on a single processor
or using multiple processors.

• Processes may interact and coordinate in complex
ways. Care must be taken when they share common
resources, to deal with race conditions, to avoid
deadlocks etc.

• We did not introduce any new programming
construct in this unit.

15110 Principles of Computing, Carnegie
Mellon University

43

