UNIT 9C

Randomness in Computation:
Cellular Automata



Announcements

e Exam locations:

2:30 Exam: Sections A, B, C, D, E go to Rashid (GHC 4401)

Sections F, G go to PH 125C.
3:30 Exam: All sections go to Rashid (GHC 4401).

e Review sessions
— Sunday 6-8 and 8-10 at GHC 4303

e Office hours on Monday and Tuesday
— In PHA 18C, not in clusters



Last Two Lectures

A computer is deterministic. It follows
rules, step by step. Then, can we get it to
behave randomly?

— Linear congruential method for generating
“seemingly” random integers

— Based on such a method we can implement higher
level functions to give us “random” outcomes



This Lecture

 Another example of how complex systems can
be generated by very simple programs

— Relevance to the unit: Simple rules to generate
seemingly random structures



Cellular Automata

e A cellular automaton is a collection of cells on a grid
that evolves through a number of discrete time steps
(generations) according to a set of rules based on the
states of neighboring cells.

e The rules are then applied iteratively for as many
time steps as desired.

— John von Neumann was one of the first people to consider
such a model.

(from Wolfram MathWorld)

15110 Principles of Computing, Carnegie
Mellon University



One-Dimensional Cellular
Automata

* Every cell has with two possible states indicated by
black or white

* A cell's neighbors defined to be the adjacent cells on

either side of it.

left right

T

black cell with a white left neighbor and a white right neighbor




Evolution of the Automaton

Starting from an initial configuration a new generation is
obtained by applying a given rule to find the state of each
cell in the next generation

generation O

generation 1

Il I




Example

* For each cell in the next generation, look at the 3
cells on the row immediately above it (immediately
above, above-and-to-the-left, and above-and-to-the-
right) in the previous generation.

e |If the middle is white and either the left or the right
is black (but not both), then this cell will become
black in the next generation. Otherwise, it will be

white.



How it works

If the middle is white and either the left or the

right is black (but not both) in the previous
generation, then this cell will become black In
the next generation. Otherwise, it will be white.

generation 0 left middle right

generation 1 \/

Il I




How it works

If the middle is white and either the left or the

right is black (but not both) in the previous
generation, then this cell will become black In
the next generation. Otherwise, it will be white.

generation 0 left middle right

generation 1




How it works

If the middle is white and either the left or the

right is black (but not both) in the previous
generation, then this cell will become black In
the next generation. Otherwise, it will be white.

generation 0 left middle right

generation 1




How it works

If the middle is white and either the left or the

right is black (but not both) in the previous
generation, then this cell will become black In
the next generation. Otherwise, it will be white.

generation 0 left middle right

generation 1




How it works

If the middle is white and either the left or the

right is black (but not both) in the previous
generation, then this cell will become black In
the next generation. Otherwise, it will be white.

generation 0 left middle right

. and so on...
generation 1 \/

Il I




How it works

Once the next generation is created, use that to create a new generation.

If the middle is white and either the left or the
right is black (but not both) in the previous
generation, then this cell will become black In
the next generation. Otherwise, it will be white.

Il I

generation 2 _

15110 Principles of Computing, Carnegie
Mellon University

generation 1

14



How it works

If the middle is white and either the left or the
right is black (but not both) in the previous
generation, then this cell will become black In
the next generation. Otherwise, it will be white.

generation 2

I I
generation 3 ;
IH I N I

15110 Principles of Computing, Carnegie
. . 15
Mellon University




How it works

If the middle is white and either the left or the
right is black (but not both) in the previous
generation, then this cell will become black In
the next generation. Otherwise, it will be white.

generation 3

Il I N B
I I

15110 Principles of Computing, Carnegie
. . 16
Mellon University




How it works

If the middle is white and either the left or the
right is black (but not both) in the previous
generation, then this cell will become black In
the next generation. Otherwise, it will be white.

generation 4
Bl I

generation 5 _

Il I Il I

15110 Principles of Computing, Carnegie
. . 17
Mellon University




What we have so far

I
Il I

I
Il I

Keep going... what do we get?
(assume each row is infinite in length)



Results

Look familiar?

15110 Principles of Computing, Carnegie
Mellon University

19



Rule 18

e This is known as “Rule 18” for 1-dimensional
cellular automata.

— Rule: If the middle is white and either the left or
the right is black (but not both), then this cell will
become black. Otherwise, it will be white.

111 110 100 011 010 OO0O1 OO0OO0

———

00010010 in binary = 18




Rule 30

e How would you describe this rule?

* Try this rule using a random initial phase.

* Try this rule with a single black cell in the
center.

111 110

i’

0 0

100 011 010 O0O01

i

1 1 1

00011110 in binary = 30

0

0

0




Rule 30

peplneiintnle S miS SN m

15110 Principles of Computing, Carnegie
Mellon University

22



:T-I‘-'F

Rule 30

AR,
‘i‘&] J-? ol et i.- ] IJ-‘JIJ?-
‘:;:T;I_:]Tgir.:‘"v"f’r]',;;f i :':I'-;.‘;"I e
L ,Tﬁ_;]'f: J‘Tﬂ',u'r"'l: "*’"’h

,T.I hepey - 32 ’ fl'-r‘rr
S S TN
) {flf’;',l

‘T' f A
R ey J:':I' ]':1T ‘TE-‘T J'T-"j
"‘;’T".:"f-*'#?;.f"ﬂ HT;:-:' 1]' o 'T'TJ-T Al

;_., ; .f,, -arr?'; ,IIHI _|-J'=1'1-1' vg_li_' J,., :'f;-,

il' eh .1'] o Ij'r ,1'.. e
;ﬁ ’; J’E'”nf i""""f*"‘hf "r‘f f 7
; ,;f oE T :-f: hﬂ' : J,:r_— I- i ‘#*ITI;'T;'i-

il .1' EfET J" T‘ ol J’I-r, Tl

‘T"’:;;J i }'Ii', Q,;’J’Li :}""_;}‘a"#u'- ,J,l';:?]n”!_{:l‘ij"r_.fj’f ﬂﬂ?ﬂﬂjﬁfh?‘?

Jl' y = Tl = - - ;J 3 :"l-.- i) -=- J:'.i'.
-'ﬂ%j-_-;fb -‘;ﬂz:rgffji;rﬂ" Pl ‘;5' T 'ﬂgfﬂj?:f-

]""'a]f’- o by el

p Py ofr et B 7 s} L M
STl .':-J:' 1... ,1‘ :U;ﬁ .n ='1'f,~
ﬁ‘?ﬂ’f ‘*‘T”";-fﬂj“‘:? e e ﬂiﬂ%’h

f Al ph b JT =7 I ]T T'?T:II']I-'- T J """'
1 T]JTﬁJPJII:Ifﬁ;@"I .-1".11' ”"":3':! :- E’l ﬁ'r; “f:.- ; it _,-11,- ’T éﬂ ! J.fsl"_rj
j jrjuf;r ;ﬂ e

T J :l :]- ]:_ s
“' ’i-;fTJ'J __,]-rIJ-' f ,.‘,EE' .II]' T : gl}- .-':-' i":. E;f'. ey ,31' -

JJ..| e,

J

I-|.



Rule 30

Rule 30 is of special interest : is used as the random number generator
used for large integers in Mathematica (Wolfram 2002, p. 317).

Central column givenby 1,1,0,1,1,1,0,0,1,1,0,0,0, 1, ...

Interpreting the central column as binary numbers and taking
successive bits gives the sequence of numbers 1, 3, 6, 13, 27, 55, 110,
220, 441, 883, 1766, ...

15110 Principles of Computing, Carnegie

Mellon University 24



Rule 30 in Nature

15110 Principles of Computing, Carnegie
Mellon University

25



Rule 90

e Results starting with a random initial phase




Rule 90

e How would you describe this rule?
* Try this rule using a random initial phase.

111 110

-

0 1

100 011 010 O0O01

* Try this rule with a single black cell in the

center.
1 0 1
0 1 1 0 1

01011010 in binary = 90

0

0

0




Rule 90

e Results starting with a single cell in the center
of the first phase




Rule Space

e How many rules are there for 1-dimensional
automata? Recall that we have 8 bits to
represent rules.

— Answer: 256



Designing Rules

Assuming we start from a cell in the middle
2 e : e e
P
% /:::H le 12 le 13 F:.:-._.._:

rule 18

ﬂ
a\\a
o e

[
L=

e
L
—_

- -
-

= | N E

JE

|
”

.
|
= i =
Al L )
b i .
=

—
[
—

ritle 20

o
o,
Py
|
—

Il L

il
10

'l
M=~ =

—

. .
= L=
M My
. v

31 le 3

[Z¥)
Ly

rule 30

... and so on until Rule 255

Source: http://mathworld.wolfram.com/EIementaryCeIIuIarAutomaton.htn;(!



Cellular Automata

e For more information:

i A NEW
¢ KIND OF
¢ SCIENCE

15110 Principles of Computing, Carnegie
Mellon University

31



Game of Life

e An infinite two-dimensional cellular automaton
devised by the mathematician John Horton Conway.

 The automaton consists of an infinite two-
dimensional orthogonal grid of square cells, each of

which is in one of two possible states, alive (m) or
dead (O).

* Every cell interacts with its eight neighbors, which
are the cells that are horizontally, vertically, or
diagonally adjacent.



Game of Life: Rules

e At each step in time, the following transitions occur:

— Any live cell with fewer than two live neighbors
dies, as if caused by under-population.

— Any live cell with two or three live neighbors lives
on to the next generation.

— Any live cell with more than three live neighbors
dies, as if by overcrowding.

— Any dead cell with exactly three live neighbors
becomes a live cell, as if by reproduction.



Generations

 The initial pattern constitutes the seed of the
system.

* The first generation is created by applying the
above rules simultaneously to every cell in the
seed—Dbirths and deaths occur simultaneously,
and the discrete moment at which this happens
is sometimes called a tick.

 The rules continue to be applied repeatedly to
create further generations.



Example: Generation 1

>

15110 Principles of Computing, Carnegie
Mellon University

35



Example: Generation 2

o =3

15110 Principles of Computing, Carnegie
Mellon University

36



Example: Generation 3

=l o =

15110 Principles of Computing, Carnegie
Mellon University

37



Example: Generation 4

o D il

Look familiar?

15110 Principles of Computing, Carnegie
Mellon University

38



Game of Life and Randomness

* |t was observed early on in the study of the
Game of Life that random starting states all
seem to stabilize eventually.

e Conway offered a prize for any example of
patterns that grow forever. Conway's prize was
collected soon after its announcement, when
two different ways were discovered for
designing a pattern that grows forever.

(from www.math.com)



Universality

e Anything that can be computed
algorithmically with a computer with
unlimited memory and no time constraints

can be computed within Conway's Game of
Life



Simulating Cellular Automata

* You can experiment with the CA simulator at

http://www.cs.cmu.edu/~15110s13/resources.html|

15110 Principles of Computing, Carnegie
Mellon University

41



