UNIT 7B

Data Representation: Compression
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Last Lecture

* Binary Trees
— Binary search trees, max-heaps

e Graphs
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Undirected and Directed Graphs

some measure for the path
such as its cost

node names @
to to
; 01 2 3 01 2 3
rom from
0|]0|6|7|5 0106|715
1|6[0]|4] 1w |04
21714103 212 |03
3195|230 3|90
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Graphs in Ruby

from 0 1 3 graph:
010/6]{7|5] f[fr[Lo,6,7,51,
1604w [ 6, 0, 4, inf ],
2(714]0](3 [ 7, 4, 0, 31,
35|30 [ 5, inf, 3, 0] ]
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Original Graph
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A Minimal Spanning Tree

The minimum total cost to connect all vertices using edges from
the original graph without using cycles. (minimum total cost = 34)

For example, what would be the minimum cost for laying cables
such that all cities are connected?
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Shortest Paths from Pittsburgh

12

The total costs of the shortest path from Pittsburgh to every other
location using only edges from the original graph.
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REPRESENTING NUMBERS
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Unsigned Integers

With 8 bits

27 26 25 24 23 22 21 20

The minimum value we can represent is 0

The maximum we value can represent is 255

The total number of distinct values we can represent
is 28 = 256
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Signed Integers

Every bit represents a power of 2 except the
“left-most” bit, which represents the sign of
the number (0 = positive, 1 = negative)
Example for positive integer (8 bits):

0
+ 26 25 24 23 22 21 20

0 0 1 1 0 1 0 0

+ 25 24 22
32 + 16 + 4 = +52
15110 Principles of Computing 10
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Negative Integers

* What about negative numbers?

* We define negative numbers as additive
inverse: -x is the number y such that x +y = 0.

* 00110100 is + 52 but 10110100 is not negative
-52 because adding these would not give 0.
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Two’s complement example

Bit Decimal
pattern | value

positive
integers 000
001
010
011
100
101
110
111

negative
integers Adding + n to — n gives 0
For example: 011 + 101 = 000
12




REPRESENTING TEXT
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ASCIlI Example

* The ASCII code for “M” is 4D hexadecimal.
e Conversion from base 16 to base 2:

hex binary hex binary hex binary hex binary
0 0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E 1110
3 0011 7 0111 B 1011 F 1111

e 4D (hex) =0100 1101 (binary) = 77 (decimal)
(leftmost bit can be used for parity)

‘ Hexadecimal is more convenient to work with ‘
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ASCII table

ASCII Code Chart

0 1 2 3 4 5 6 7 8 9 A B C D E F
0| NUL | SOH | STX |ETX |EOT |ENQ | ACK |BEL | BS | HT | LF | VT | FF [ CR [ SO | ST
1|DLE |DC1 |DC2 | DC3 [ DC4 |NAK [SYN |ETB |CAN | EM |SUB [ESC| FS | GS [ RS | US
2 ! " # $ % & v ( ) * + ’ - . /
3] 0 1 2 3 4 5 6 7 8 9 3 ; < = > ?
4@ | A|B|C|D|E|F|G|H|I|JIJ|K|L|HWH|[N|O
5P |Q|R|S|T|JU|[V|W|[X]|]Y]|Z [ |\ 1] ~1]-
6| - a|b|c d|le| f|l9g9]|h|i|Ji]|]k|1T|m]|n|o
7{ P q|r s t|lu|v | w|x]|Y]|z { | } | - |DEL

e 2’characters presented ina 23 * 24 table.
e Values are represented in hexadecimal (base 16).
e ASCII code for “M” is 4D (hex).
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COMPRESSION
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Fixed-Width Encoding

In a fixed-width encoding scheme, each
character is given a binary code with the
same number of bits.

Example:

Standard ASCIl is a fixed width encoding
scheme, where each character is encoded with
7 bits.

This gives us 27 = 128 different codes for
characters.

15110 Principles of Computing

Carnegie Mellon University - CORTINA 7

Fixed-Width Encoding

Given a character set with n characters, what is the
minimum number of bits needed for a fixed-width
encoding of these characters?
Since a fixed width of k bits gives us n unique codes to
use for characters, where n = 2k,
So given n characters, the number of bits needed is
given by k = |—Iog2n—| . (We use the ceiling function since
log,n may not be an integer.)
Example: To encode just the alphabet A-Z using a fixed-

width encoding, we would need |—Iog226—| =5 bits:
e.g. A =>00000, B =>00001, C => 00010, ..., Z=>11001.

15110 Principles of Computing
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Using Fixed-Width Encoding

* If we have a fixed-width encoding scheme using
n bits for a character set and we want to

transmit or store a file with m characters, we

would need mn bits to store the entire file.

e Can we do better?

—  If we assign fewer bits to more frequent characters,
and more bits to less frequent characters, then the
overall length of the message might be shorter.

Use a method known as Huffman
encoding named after David Huffman

15110 Principles of Computing
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The Hawaiian Alphabet

* The Hawaiian alphabet
consists of 13 characters.

— " is the okina which
sometimes occurs between
vowels (e.g. KAMA’ AINA )

e The table to the right
shows each character along
with its relative frequency
in Hawaiian words.
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.068
.262
.072
.045
.084
.106
.044
.032
.083
.106
.030
.059
.009
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The Huffman Tree

* We use a tree structure to develop the unique
binary code for each letter.

e Start with each letter/frequency as its own node:

‘ | L
0.068 0.084 0.044
N 0 P w
0083/ \0.106/ \0.030 0.009
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The Huffman Tree

e Combine lowest two frequency nodes into a tree
with a new parent with the sum of their
frequencies.

‘ |
0.068 0.084
N 0 L
0.083) \0.106/ \0.044
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The Huffman Tree

e Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies.

‘ |
0.068 0.084
N 0 L
0083/ \0.106/ \0.044
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The Huffman Tree

* Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies.
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The Huffman Tree

e Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies...
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0.106
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0]
0.106
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©
SIOIOEEOEES
L ‘ N |
0.044 0.068 0.083 0.084
* Repeat until you & @

have one tree with

all nodes linked in.
0.009 0.030

15110 Principles of Computing
Carnegie Mellon University - CORTINA

16



BON
0.428 @
1

0
OO @ @ .

o), (ot (o) () @ o)
0 1 ¥, 1 O 1 0 1
L ! N |

o) i) o) o) i)
0 1

* Label all left & @

branches with 0 0 1

and all right

branches with 1 Q.005/ \Q.0%0
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BOW
0.428 @
1 0

0 1
0 @ 1 0 @ 1 @ 0 @ 1
cleloloiNcINT
0 1 ¥ 1 O 1 0 1
) ) (o)) i)
0.044 0.068 0.083 0.084
0 1
* The binary code for @ @
each character is
obtained by following
the path from the root

to the character.

15110 Principles of Computing
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BOW
0.428 @
0 1 0 1
1

0 @ 1 0 @ 1 @ 0
o)

o0) (o) Q) () (o) (o39)
0 1 ¥, 1 O 1 0 1
OO ©eLO6E
0.044 0.068 0.083 0.084

0 1
Examples: & @
H => 0001 0 1
A=>10 W )
P=>110011 0.009 0.030

15110 Principles of Computing
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Fixed Width vs. Huffman Coding

' 0000 ' 0111
a 0001 A 10
E 0010 E 1101 ALOHA
H 0011 H 0001
. 0100 I 1111  piyed Width:
K 0101 K 001
0001 01101001 0011 0001
L 0110 L 0000 _
M 0111 M 11000 20 bits
N 1000 N 1110
o] 1001 o] 010 Huffman Code:
P toto-F 110011 100000 010 0001 10
U 1011 U 0110 15 bits
W 1100 W 110010

15110 Principles of Computing
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Variable Length Codes

* |n a fixed-width code, the boundaries

between letters are fixed in advance:
0001 0110 1001 0011 o001

e With a variable-length code, the boundaries
are determined by the letters themselves.
— No letter’s code can be a prefix of another letter.

— Example: since A is “10”, no other letter’s code can
begin with “10”. All the remaining codes begin
with “00”, “01”, or “11”.

15110 Principles of Computing 37
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Programming the Huffman Tree

e Let’s write Ruby code to produce a Huffman
encoding of an alphabet.

e At each step we need to find the two nodes
with the lowest frequency scores.

* This will be easy if nodes are kept in a list that
is sorted by score value.

e Solution: use a priority queue.

15110 Principles of Computing
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Priority Queues

NOTE: For this unit, you will need RubyLabs set up and you will
need to include BitLab (see p. 167)

A priority queue (PQ) is like an array that is sorted
P9 = PriorityQueue.new

=> [1]

To add element into the priority queue in its correct
position, we use the << operator:

pg << "peach"

pg << "apple"

P9 << "banana"

=> ["apple", "banana", "peach"]

15110 Principles of Computing
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Priority Queues (cont’d)

To remove the first element from the priority queue, we
will use the shift method:

fruitl = pg.shift

=> "apple"

Pa

=> ["banana", "peach'"]

fruit2 = pg.shift

=> "banana"

P4
=> ["peach"]

15110 Principles of Computing
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Tree Nodes

We can store all of the node data into a 2-dimensional array:

table = [ ["'", 0.068], ["A", 0.262],
["E", 0.072], ["H", 0.045], ["I", 0.084],
["K", 0.106], ["L", 0.044], ["M", 0.032],
['N", 0.083], ["O", 0.106], ["P", 0.030],
["U", 0.059], ["wW", 0.009] ]

A tree node consists of two values, the character and its
frequency. Making one of the tree nodes:

char table[2] .first # "E"

freq table[2] .last # 0.072

node = Node.new(char, freq)

15110 Principles of Computing

Carnegie Mellon University - CORTINA L

Building a PQ of Single Nodes

def make table
—Pq( ) Remember: each item

P9 = PriorityQueue.new in the table is a
for item in table“do 2-element array with
a character and a

char = item.first frequency.
freq = item.last
node = Node.new(char, freq)
P9 << node

end

return pq

end

15110 Principles of Computing
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Building our Priority Queue

pgqg = make pqg(table)
=> [( W: 0.009 ), ( P: 0.030 ),

( M: 0.032 ), ( L: 0.044 ),
( H: 0.045 ), ( U: 0.059 ),
(': 0.068 ), ( E: 0.072 ),
( N: 0.083 ), ( I: 0.084 ),
( K: 0.106 ), ( O: 0.106 ),
( A: 0.262 )]

‘\\\\ This is our priority queue
showing the 13 nodes
in sorted order based on
frequency.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Building a Huffman Tree

(Slightly different than book version fig 7.9)

def build tree (pq)
while pg.length > 1
nodel = pqg.shift
node2 = pqg.shift
Pg << Node.combine (nodel, node2)

end \\

return pq.first Creates a new node
with nodel as its left child

end
and node2 as its right child

15110 Principles of Computing
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Building our Huffman Tree

tree = build tree (pq)
=> (1.000 ( 0.428 ( 0.195 ( 0.089

(L: 0.044 ) ( H: 0.045 ) ) ( K: 0.106 ) )
(0.233 ( 0: 0.106 ) ( 0.127 ( U: 0.059 )
(': 0.068 ) ) ) ) (0.572 ( A: 0.262 )

( 0.310 ( 0.143 ( 0.071 ( M: 0.032 )

( 0.039 (Ww: 0.009 ) ( P: 0.030) ) )

(E: 0.072 ) ) ( 0.167 ( N: 0.083 )

(I: 0.084 ) ) ) ))

This is just our Huffman tree
expressed using recursively nested
parenthetical components:

( root ( left ) ( right ) )

15110 Principles of Computing
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BON
0.428 @
1
1

0 1 0
0 @ 1 0 @ 1 @ 0
GG, o 5
0 1 ¥, 1 O 1 0 1
L ‘ N [
0.044 0.068 0083/ \0.084
0 1

Examples: @ @

H =>0001 0 1

A=>10 W )

P=>110011 0.009 0.030
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Assigning Codes, Encoding & Decoding

ht = assign codes (tree) from BitLab
- takes a Huffman tree and
\ returns a hash table that
ht["W"] maps each letter to its
=> 110010 binary code
ht [ "A" ] — N h
= 10 ote the [ ] syntax.

This returns the code
associated with the
msg = encode ("ALOHA", tree) characterfrom the

=> 100000010000110 ': hash table.
decode (msg, tree) from BitLab
=> "ALOHA" encode and decode functions

15110 Principles of Computing
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Next Lecture

* Representing images and sound
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