UNIT 7B

Data Representation: Compression

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Last Lecture

* Binary Trees
— Binary search trees, max-heaps

e Graphs

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Undirected and Directed Graphs

some measure for the path
such as its cost

node names @
to to
; 01 2 3 01 2 3
rom from
0|]0|6|7|5 0106|715
1|6[0]|4] 1w |04
21714103 212 |03
3195|230 3|90

15110 Principles of Computing
Carnegie Mellon University

Graphs in Ruby

from 0 1 3 graph:
010/6]{7|5] f[fr[Lo,6,7,51,
1604w [6, 0, 4, inf],
2(714]0](3 [7, 4, 0, 31,
35|30 [5, inf, 3, 0]]

15110 Principles of Computing
Carnegie Mellon University

Original Graph

15110 Principles of Computing
Carnegie Mellon University

4]

A Minimal Spanning Tree

The minimum total cost to connect all vertices using edges from
the original graph without using cycles. (minimum total cost = 34)

For example, what would be the minimum cost for laying cables
such that all cities are connected?

15110 Principles of Computing
Carnegie Mellon University

Shortest Paths from Pittsburgh

12

The total costs of the shortest path from Pittsburgh to every other
location using only edges from the original graph.

15110 Principles of Computing
Carnegie Mellon University

REPRESENTING NUMBERS

15110 Principles of Computing
Carnegie Mellon University

Unsigned Integers

With 8 bits

27 26 25 24 23 22 21 20

The minimum value we can represent is 0

The maximum we value can represent is 255

The total number of distinct values we can represent
is 28 = 256

15110 Principles of Computing 9
Carnegie Mellon University - CORTINA

Signed Integers

Every bit represents a power of 2 except the
“left-most” bit, which represents the sign of
the number (0 = positive, 1 = negative)
Example for positive integer (8 bits):

0
+ 26 25 24 23 22 21 20

0 0 1 1 0 1 0 0

+ 25 24 22
32 + 16 + 4 = +52
15110 Principles of Computing 10

Carnegie Mellon University - CORTINA

Negative Integers

* What about negative numbers?

* We define negative numbers as additive
inverse: -x is the number y such that x +y = 0.

* 00110100 is + 52 but 10110100 is not negative
-52 because adding these would not give 0.

15110 Principles of Computing,

Carnegie Mellon University H

Two’s complement example

Bit Decimal
pattern | value

positive
integers 000
001
010
011
100
101
110
111

negative
integers Adding + n to — n gives 0
For example: 011 + 101 = 000
12

REPRESENTING TEXT

15110 Principles of Computing
Carnegie Mellon University

ASCIlI Example

* The ASCII code for “M” is 4D hexadecimal.
e Conversion from base 16 to base 2:

hex binary hex binary hex binary hex binary
0 0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E 1110
3 0011 7 0111 B 1011 F 1111

e 4D (hex) =0100 1101 (binary) = 77 (decimal)
(leftmost bit can be used for parity)

‘ Hexadecimal is more convenient to work with ‘

15110 Principles of Computing

Carnegie Mellon University - CORTINA 4

ASCII table

ASCII Code Chart

0 1 2 3 4 5 6 7 8 9 A B C D E F
0| NUL | SOH | STX |ETX |EOT |ENQ | ACK |BEL | BS | HT | LF | VT | FF [CR [SO | ST
1|DLE |DC1 |DC2 | DC3 [DC4 |NAK [SYN |ETB |CAN | EM |SUB [ESC| FS | GS [RS | US
2 ! " # $ % & v () * + ’ - . /
3] 0 1 2 3 4 5 6 7 8 9 3 ; < = > ?
4@ | A|B|C|D|E|F|G|H|I|JIJ|K|L|HWH|[N|O
5P |Q|R|S|T|JU|[V|W|[X]|]Y]|Z [|\ 1] ~1]-
6| - a|b|c d|le| f|l9g9]|h|i|Ji]|]k|1T|m]|n|o
7{ P q|r s t|lu|v | w|x]|Y]|z { | } | - |DEL

e 2’characters presented ina 23 * 24 table.
e Values are represented in hexadecimal (base 16).
e ASCII code for “M” is 4D (hex).

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 15

COMPRESSION

15110 Principles of Computing

Carnegie Mellon University 16

Fixed-Width Encoding

In a fixed-width encoding scheme, each
character is given a binary code with the
same number of bits.

Example:

Standard ASCIl is a fixed width encoding
scheme, where each character is encoded with
7 bits.

This gives us 27 = 128 different codes for
characters.

15110 Principles of Computing

Carnegie Mellon University - CORTINA 7

Fixed-Width Encoding

Given a character set with n characters, what is the
minimum number of bits needed for a fixed-width
encoding of these characters?
Since a fixed width of k bits gives us n unique codes to
use for characters, where n = 2k,
So given n characters, the number of bits needed is
given by k = |—Iog2n—| . (We use the ceiling function since
log,n may not be an integer.)
Example: To encode just the alphabet A-Z using a fixed-

width encoding, we would need |—Iog226—| =5 bits:
e.g. A =>00000, B =>00001, C => 00010, ..., Z=>11001.

15110 Principles of Computing

Carnegie Mellon University - CORTINA 18

Using Fixed-Width Encoding

* If we have a fixed-width encoding scheme using
n bits for a character set and we want to

transmit or store a file with m characters, we

would need mn bits to store the entire file.

e Can we do better?

— If we assign fewer bits to more frequent characters,
and more bits to less frequent characters, then the
overall length of the message might be shorter.

Use a method known as Huffman
encoding named after David Huffman

15110 Principles of Computing
Carnegie Mellon University - CORTINA

19

The Hawaiian Alphabet

* The Hawaiian alphabet
consists of 13 characters.

— " is the okina which
sometimes occurs between
vowels (e.g. KAMA’ AINA)

e The table to the right
shows each character along
with its relative frequency
in Hawaiian words.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

S5 dwvwoZRHXRHIDR P

O O O O OO OO0 oo o o o

.068
.262
.072
.045
.084
.106
.044
.032
.083
.106
.030
.059
.009

20

10

The Huffman Tree

* We use a tree structure to develop the unique
binary code for each letter.

e Start with each letter/frequency as its own node:

‘ | L
0.068 0.084 0.044
N 0 P w
0083/ \0.106/ \0.030 0.009

15110 Principles of Computing
Carnegie Mellon University - CORTINA

21

The Huffman Tree

e Combine lowest two frequency nodes into a tree
with a new parent with the sum of their
frequencies.

‘ |
0.068 0.084
N 0 L
0.083) \0.106/ \0.044

15110 Principles of Computing
Carnegie Mellon University - CORTINA

22

11

The Huffman Tree

e Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies.

‘ |
0.068 0.084
N 0 L
0083/ \0.106/ \0.044

15110 Principles of Computing 23
Carnegie Mellon University - CORTINA °

The Huffman Tree

* Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies.

15110 Principles of Computing 24
Carnegie Mellon University - CORTINA

12

The Huffman Tree

e Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies...

15110 Principles of Computing
Carnegie Mellon University - CORTINA

0.106

15110 Principles of Computing
Carnegie Mellon University - CORTINA

26

13

0]
0.106

15110 Principles of Computing

Carnegie Mellon University - CORTINA 21

15110 Principles of Computing
Carnegie Mellon University - CORTINA

28

14

15110 Principles of Computing

Carnegie Mellon University - CORTINA 29

15110 Principles of Computing
Carnegie Mellon University - CORTINA

30

15

15110 Principles of Computing
Carnegie Mellon University - CORTINA

©
SIOIOEEOEES
L ‘ N |
0.044 0.068 0.083 0.084
* Repeat until you & @

have one tree with

all nodes linked in.
0.009 0.030

15110 Principles of Computing
Carnegie Mellon University - CORTINA

16

BON
0.428 @
1

0
OO @ @ .

o), (ot (o) () @ o)
0 1 ¥, 1 O 1 0 1
L ! N |

o) i) o) o) i)
0 1

* Label all left & @

branches with 0 0 1

and all right

branches with 1 Q.005/ \Q.0%0

15110 Principles of Computing
Carnegie Mellon University - CORTINA

33
33

BOW
0.428 @
1 0

0 1
0 @ 1 0 @ 1 @ 0 @ 1
cleloloiNcINT
0 1 ¥ 1 O 1 0 1
)) (o)) i)
0.044 0.068 0.083 0.084
0 1
* The binary code for @ @
each character is
obtained by following
the path from the root

to the character.

15110 Principles of Computing

Carnegie Mellon University - CORTINA 34

17

BOW
0.428 @
0 1 0 1
1

0 @ 1 0 @ 1 @ 0
o)

o0) (o) Q) () (o) (o39)
0 1 ¥, 1 O 1 0 1
OO ©eLO6E
0.044 0.068 0.083 0.084

0 1
Examples: & @
H => 0001 0 1
A=>10 W)
P=>110011 0.009 0.030

15110 Principles of Computing

Carnegie Mellon University - CORTINA 35

Fixed Width vs. Huffman Coding

' 0000 ' 0111
a 0001 A 10
E 0010 E 1101 ALOHA
H 0011 H 0001
. 0100 I 1111 piyed Width:
K 0101 K 001
0001 01101001 0011 0001
L 0110 L 0000 _
M 0111 M 11000 20 bits
N 1000 N 1110
o] 1001 o] 010 Huffman Code:
P toto-F 110011 100000 010 0001 10
U 1011 U 0110 15 bits
W 1100 W 110010

15110 Principles of Computing

Carnegie Mellon University - CORTINA 36

18

Variable Length Codes

* |n a fixed-width code, the boundaries

between letters are fixed in advance:
0001 0110 1001 0011 o001

e With a variable-length code, the boundaries
are determined by the letters themselves.
— No letter’s code can be a prefix of another letter.

— Example: since A is “10”, no other letter’s code can
begin with “10”. All the remaining codes begin
with “00”, “01”, or “11”.

15110 Principles of Computing 37
Carnegie Mellon University - CORTINA °

Programming the Huffman Tree

e Let’s write Ruby code to produce a Huffman
encoding of an alphabet.

e At each step we need to find the two nodes
with the lowest frequency scores.

* This will be easy if nodes are kept in a list that
is sorted by score value.

e Solution: use a priority queue.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Priority Queues

NOTE: For this unit, you will need RubyLabs set up and you will
need to include BitLab (see p. 167)

A priority queue (PQ) is like an array that is sorted
P9 = PriorityQueue.new

=> [1]

To add element into the priority queue in its correct
position, we use the << operator:

pg << "peach"

pg << "apple"

P9 << "banana"

=> ["apple", "banana", "peach"]

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Priority Queues (cont’d)

To remove the first element from the priority queue, we
will use the shift method:

fruitl = pg.shift

=> "apple"

Pa

=> ["banana", "peach'"]

fruit2 = pg.shift

=> "banana"

P4
=> ["peach"]

15110 Principles of Computing

Carnegie Mellon University - CORTINA 40

20

Tree Nodes

We can store all of the node data into a 2-dimensional array:

table = [["'", 0.068], ["A", 0.262],
["E", 0.072], ["H", 0.045], ["I", 0.084],
["K", 0.106], ["L", 0.044], ["M", 0.032],
['N", 0.083], ["O", 0.106], ["P", 0.030],
["U", 0.059], ["wW", 0.009]]

A tree node consists of two values, the character and its
frequency. Making one of the tree nodes:

char table[2] .first # "E"

freq table[2] .last # 0.072

node = Node.new(char, freq)

15110 Principles of Computing

Carnegie Mellon University - CORTINA L

Building a PQ of Single Nodes

def make table
—Pq() Remember: each item

P9 = PriorityQueue.new in the table is a
for item in table“do 2-element array with
a character and a

char = item.first frequency.
freq = item.last
node = Node.new(char, freq)
P9 << node

end

return pq

end

15110 Principles of Computing

Carnegie Mellon University - CORTINA 42

21

Building our Priority Queue

pgqg = make pqg(table)
=> [(W: 0.009), (P: 0.030),

(M: 0.032), (L: 0.044),
(H: 0.045), (U: 0.059),
(': 0.068), (E: 0.072),
(N: 0.083), (I: 0.084),
(K: 0.106), (O: 0.106),
(A: 0.262)]

‘\\\\ This is our priority queue
showing the 13 nodes
in sorted order based on
frequency.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Building a Huffman Tree

(Slightly different than book version fig 7.9)

def build tree (pq)
while pg.length > 1
nodel = pqg.shift
node2 = pqg.shift
Pg << Node.combine (nodel, node2)

end \\

return pq.first Creates a new node
with nodel as its left child

end
and node2 as its right child

15110 Principles of Computing

Carnegie Mellon University - CORTINA a4

22

Building our Huffman Tree

tree = build tree (pq)
=> (1.000 (0.428 (0.195 (0.089

(L: 0.044) (H: 0.045)) (K: 0.106))
(0.233 (0: 0.106) (0.127 (U: 0.059)
(': 0.068)))) (0.572 (A: 0.262)

(0.310 (0.143 (0.071 (M: 0.032)

(0.039 (Ww: 0.009) (P: 0.030)))

(E: 0.072)) (0.167 (N: 0.083)

(I: 0.084)))))

This is just our Huffman tree
expressed using recursively nested
parenthetical components:

(root (left) (right))

15110 Principles of Computing

45
Carnegie Mellon University - CORTINA 5

BON
0.428 @
1
1

0 1 0
0 @ 1 0 @ 1 @ 0
GG, o 5
0 1 ¥, 1 O 1 0 1
L ‘ N [
0.044 0.068 0083/ \0.084
0 1

Examples: @ @

H =>0001 0 1

A=>10 W)

P=>110011 0.009 0.030

15110 Principles of Computing

Carnegie Mellon University - CORTINA 46

23

Assigning Codes, Encoding & Decoding

ht = assign codes (tree) from BitLab
- takes a Huffman tree and
\ returns a hash table that
ht["W"] maps each letter to its
=> 110010 binary code
ht ["A"] — N h
= 10 ote the [] syntax.

This returns the code
associated with the
msg = encode ("ALOHA", tree) characterfrom the

=> 100000010000110 ': hash table.
decode (msg, tree) from BitLab
=> "ALOHA" encode and decode functions

15110 Principles of Computing

Carnegie Mellon University - CORTINA 4

Next Lecture

* Representing images and sound

15110 Principles of Computing

Carnegie Mellon University - CORTINA 48

24

