UNIT 6B
Organizing Data: Hash Tables

15110 Principles of Computing
Carnegie Mellon University

Announcements

e Online assighment due Wednesday 27t

e Lab Exam 1 Thursday 28t
— Write simple programs during recitation

15110 Principles of Computing
Carnegie Mellon University

Last Lecture

e Arrays, lists, stacks, queues

15110 Principles of Computing
Carnegie Mellon University

This Lecture

e Hash tables

15110 Principles of Computing
Carnegie Mellon University

Comparing Algorithms

* You are a professor and you want to find an exam
in a large pile of n exams.
e Search the pile using linear search.
— Perstudent: O(n)
— Total for n students: 0O(n?)
* Have an assistant sort the exams first by last name.
— Assistant’s work: O(n log n) using merge sort

— Professor:
. Search for one student: O(log n) using binary search
. Total for n students: O(n log n)

15110 Principles of Computing
Carnegie Mellon University

Another way

* Set up a large number of “buckets”.

* Place each exam into a bucket based on some
function.
— Example: 26 buckets, each labeled with a letter. Use the

first letter of student’s andrew ID to choose the bucket.

* |deally, if the exams get distributed evenly, there will
be only a few exams per bucket.
— Assistant: O(n) putting n exams into the buckets

— Professor: O(1) search for an exam by going directly to the
relevant bucket and searching through a few exams.

15110 Principles of Computing
Carnegie Mellon University

Hashing

¢ A “hash function” h(key) that maps a key to an array index in 0..k-1.
¢ To search the array Table for that key, look in Table[h(key)]

Universe of keys
h(keyl) = 0O:
1:
2:
3:
h(key3) = 4:
h(key2) = 5:

A hash function h is used to map keys to hash-table slots. In our example, keys
were names and the hash function was getting the first letter of the name.

15110 Principles of Computing,
Carnegie Mellon University

An Empty Hash Table

a A w N R o

15110 Principles of Computing,
Carnegie Mellon University

Add Element “fox”

—_— fox h("fOX") |S 0

a M e N R o

Suppose some function h gives these results. We did not specify what it is.

15110 Principles of Computing

Carnegie Mellon University 9
Add Element “goat”

0: ——> fox
1
2
3:
4: ——— goat h(**goat™) is 4
5:

15110 Principles of Computing 10

Carnegie Mellon University

Add Element “hen”

—+—> fox —— dog

h(*“dog'*) is also 0

[E—Y goat h("goat") |S 4

a M e N R o

15110 Principles of Computing

Carnegie Mellon University H

Requirements for the
Hash Function h(x)

e Must be fast: O(1)

e Must distribute items roughly uniformly
throughout the array, so everything doesn’t
end up in the same bucket.

15110 Principles of Computing

Carnegie Mellon University 12

Hash table

e Let’s assume that we are going to store only lower
case strings into an array (hash table).

tablel = Array.new(26)

=> [nil, nil, nil, nil, nil, nil, nil, nil,
nil, nil, nil, nil, nil, nil, nil, nil,
nil, nil, nil, nil, nil, nil, nil, nil,
nil, nil]

15110 Principles of Computing
Carnegie Mellon University

Strings and ASCII codes

s = "hello”
for 1 In 0O..s.length-1 do
print s[i], "\n"

end
104 You can treat a string like an array
101 in Ruby.
108 If you access the ith character,
you get the ASCII code for that
108
character.
111

15110 Principles of Computing

Carnegie Mellon University 4

Hash table

* We could pick the array position where each string
is stored based on the first letter of the string using
this hash function:

def h(string)
return string[0] - 97
end

The ASCII values of lowercase letters are:
“a” -> 97, “b” -> 98, “c” -> 99, “d” -> 100, etc.

15110 Principles of Computing 15
Carnegie Mellon University - CORTINA N

Inserting into Hash Table

* Toinsert into the hash table, we simply use the
hash function h to determine which index
(“bucket”) to store the element.

def insert(table, name)
table[h(name)] = name
end

insert(tablel, “aardvark™)
insert(tablel, “beaver™)

15110 Principles of Computing 16
Carnegie Mellon University

Hash function (cont’d)

e Using the hash function h:
— “aardvark” would be stored in an array at index 0
— “beaver” would be stored in an array at index 1
— “kangaroo” would be stored in an array at index 10
— “whale” would be stored in an array at index 22

tablel

=> ["aardvark', "beaver', nil, nil, nil,
nil, nil, nil, nil, nil, "kangaroo', nil,
nil, nil, nil, nil, nil, nil, nil, nil,
nil, nil, "whale”™, nil, nil, nil]

15110 Principles of Computing

Carnegie Mellon University 7

Constant Time Search

def hash_search(table, i1tem)
return table[h(item)].include?(item)
end

>> hash_search(tablel, “kangaroo'™)
= true

>> hash_search(table2, "armadillo™)
—Talse

15110 Principles of Computing

Carnegie Mellon University 18

Hash function (cont’d)

>> insert(tablel,bunny'™)

>> insert(tablel,bear'™)

>> tablel

= ["aardvark™, "bear', nil, nil, nil, nil,
nil, nil, nil, nil, "kangaroo™, nil, nil,
nil, nil, nil, nil, nil, nil, nil, nil,
nil, "whale™, nil, nil, nil]

If we try to insert “bunny” and “bear” into the hash table, each
word overwrites the previous word since they all hash to index 1.

15110 Principles of Computing

Carnegie Mellon University 19

Revised Ruby Implementation

>> table2 = Array.new(26)
>> for 1 iIn 0 .. 25 do
table2[i] = [1
end

=L, 1. 0. 01, 0. 0. . 0. 1. . [,
0. 0. 0. 0. . 0. 1. 0. 1. . 0,
1. 0. 0. 01

15110 Principles of Computing
Carnegie Mellon University

10

Inserting into New Table

def i1nsert(table, item)
index = h(item)
iT not table[index].include?(item) then
table[index] << i1tem
end
return nil
end

15110 Principles of Computing 21
Carnegie Mellon University

Inserting into new hash table

insert(table2, "aardvark™)

>> insert(table2, beaver™)

>> insert(table2, kangaroo™)

>> insert(table2, "whale'™)

>> insert(table2, "bunny')

>> insert(table2, "bear™)

>> table2

=> [[aardvark™], ["beaver'™, "bunny',

“bear”], [1. 0. 0. O. 0. O. O. .
["kangaroo™], [1, [1. [1. 1. [, [, [1.
1. 00. 1. 0. ["whale”], [1., [1. [11

15110 Principles of Computing

Carnegie Mellon University 22

11

Collisions

e “beaver”, “bunny” and “bear” all end up in the same
bucket.

* These are collisions in a hash table.
* Why do we want to minimize collisions?

15110 Principles of Computing

Carnegie Mellon University 23

Collisions

* The more collisions you have in a bucket, the more
you have to search in the bucket to find the desired
element.

* We want to try to minimize the collisions by creating
a hash function that distribute the keys (strings) into
different buckets as evenly as possible.

15110 Principles of Computing

Carnegie Mellon University 24

12

A Poor Attempt

def h(string)
k=0
for 1 In O..string.length-1 do

k = string[i] + k
end
return k
end

h(**hello”) => 532
h(*olleh™) => 532

Permutations still give same index (collision) and numbers are high.

15110 Principles of Computing
Carnegie Mellon University

What’s A Good Hash Function?

* For strings:

— Treat the characters in the string like digits in a
base-256 number.
— Divide this quantity by the number of buckets, k.

— Take the remainder, which will be an integer in the
range 0..k-1.

15110 Principles of Computing

Carnegie Mellon University 26

13

Hash Function For Strings

def h(s)
sum = 0O
for 1 in O..s.length-1 do
sum = 256*sum + s[i]
end
return sum % 10

end Number of buckets,
could be anything

>> h(''goat™)
= 2

15110 Principles of Computing
Carnegie Mellon University

Treating Characters As Numbers

>> "a"[0]

=97
>> IIAII [0]
Base 10:
=65 “573” is 5x102 + 7x10! + 3x100 = 573
>> : e tll
S ca Base 256:
="'cat" “cat” is “c"x2562 + “a"x256 + “t"x256°
=99x2562 + 97x256! + 116x256°
>> s[0] = 6513012
=99
>> s[1]
=97
>> s[2]
= 116 15110 Principles of Computing

Carnegie Mellon University

Final results

>> table3 = Array.new(10)

>> for 1 iIn 0 .. 9 do
table2[i] = []
end

=[. 0. 0. 0. . 0. 0. 0. . il

>> insert(table3,"aardvark™™)

>> insert(table3, " bear'™))

>> insert(table3, bunny') S(t)llllligi?)ze SSte
>> insert(table3, "beaver'™) b-words are

>> insert(table3,"dog"™) distributed better.
>> table3

=> [[“bear”], [“bunny”], [1. 0. [“beaver”], [1. . L.
[1.[“aardvark”, “dog”]1]

15110 Principles of Computing

Carnegie Mellon University 29

Fancier Hash Functions

* How would you hash an integer i?
— Perhaps i % k would work well.

 How would you hash a list?
— Sum the hashes of the list elements.

* How would you hash a floating point number?

— Maybe look at its binary representation and treat
that as an integer?

15110 Principles of Computing

Carnegie Mellon University 30

Efficiency

* |f the keys (strings) are distributed well throughout
the table, then each bucket will only have a few keys
and the search should take O(1) time.

* Example:
If we have a table of size 1000 and we hash 4000 keys
into the table and each bucket has approximately the
same number of keys (approx. 4), then a search will
only require us to look at approx. 4 keys => O(1)

— But, the distribution of keys is dependent on the keys and
the hash function we use!

15110 Principles of Computing

Carnegie Mellon University st

Summary of Search Techniques

Linear search 0, since we're O(n)
given the list
Binary search O(n log n) O(log n)
to sort the list
Hash table O(n) to fill the 0(1)
buckets

15110 Principles of Computing

Carnegie Mellon University 32

16

Hash Tables in Ruby

e So far, we looked at hash tables as a means of
determining whether a key is in a list in O(1)
time.

* We can generalize this idea to associate a key
with a value.

e Examples:
— Employee name => Employee number
— Product code => Price
— Name in contacts list => Email address

15110 Principles of Computing
Carnegie Mellon University

Hashes (Associate Arrays) in Ruby

>> h
{"'"Mercedes' => 50000,
"Bentley'" => 120000}

>> h[""Mercedes']
—=50000

15110 Principles of Computing
Carnegie Mellon University

17

Hash in Ruby (continued)

>> h2 = {:apple => :red,
-banana => :yellow,
:cherry => :red}

>> h2[:banana]

=:yellow

>> h2._1nvert

={:red => :cherry,

:yellow => :banana}

15110 Principles of Computing
Carnegie Mellon University

Next Week

e Monday: Finish data structures unit with trees
and graphs

* Wednesday and Friday: New unit in data
representation

15110 Principles of Computing
Carnegie Mellon University

18

