UNIT 6B
Organizing Data: Hash Tables
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Announcements

e Online assighment due Wednesday 27t

e Lab Exam 1 Thursday 28t
— Write simple programs during recitation
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Last Lecture

e Arrays, lists, stacks, queues
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This Lecture

e Hash tables
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Comparing Algorithms

*  You are a professor and you want to find an exam
in a large pile of n exams.
e Search the pile using linear search.
—  Perstudent: O(n)
—  Total for n students: 0O(n?)
* Have an assistant sort the exams first by last name.
—  Assistant’s work: O(n log n) using merge sort

—  Professor:
. Search for one student: O(log n) using binary search
. Total for n students: O(n log n)
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Another way

* Set up a large number of “buckets”.

* Place each exam into a bucket based on some
function.
— Example: 26 buckets, each labeled with a letter. Use the

first letter of student’s andrew ID to choose the bucket.

* |deally, if the exams get distributed evenly, there will
be only a few exams per bucket.
— Assistant: O(n) putting n exams into the buckets

— Professor: O(1) search for an exam by going directly to the
relevant bucket and searching through a few exams.
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Hashing

¢ A “hash function” h(key) that maps a key to an array index in 0..k-1.
¢ To search the array Table for that key, look in Table[h(key)]

Universe of keys
h(keyl) = 0O:
1:
2:
3:
h(key3) = 4:
h(key2) = 5:

A hash function h is used to map keys to hash-table slots. In our example, keys
were names and the hash function was getting the first letter of the name.
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An Empty Hash Table

a A w N R o
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Add Element “fox”

—_—  fox h("fOX") |S 0

a M e N R o

Suppose some function h gives these results. We did not specify what it is.
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Add Element “goat”

0: ——> fox
1
2
3:
4: ——— goat h(**goat™) is 4
5:
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Add Element “hen”

—+—> fox —— dog

h(*“dog'*) is also 0

[ E—Y goat h("goat") |S 4

a M e N R o
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Requirements for the
Hash Function h(x)

e Must be fast: O(1)

e Must distribute items roughly uniformly
throughout the array, so everything doesn’t
end up in the same bucket.
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Hash table

e Let’s assume that we are going to store only lower
case strings into an array (hash table).

tablel = Array.new(26)

=> [nil, nil, nil, nil, nil, nil, nil, nil,
nil, nil, nil, nil, nil, nil, nil, nil,
nil, nil, nil, nil, nil, nil, nil, nil,
nil, nil]
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Strings and ASCII codes

s = "hello”
for 1 In 0O..s.length-1 do
print s[i], "\n"

end
104 You can treat a string like an array
101 in Ruby.
108 If you access the ith character,
you get the ASCII code for that
108
character.
111
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Hash table

*  We could pick the array position where each string
is stored based on the first letter of the string using
this hash function:

def h(string)
return string[0] - 97
end

The ASCII values of lowercase letters are:
“a” -> 97, “b” -> 98, “c” -> 99, “d” -> 100, etc.
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Inserting into Hash Table

* Toinsert into the hash table, we simply use the
hash function h to determine which index
(“bucket”) to store the element.

def insert(table, name)
table[h(name)] = name
end

insert(tablel, “aardvark™)
insert(tablel, “beaver™)
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Hash function (cont’d)

e Using the hash function h:
—  “aardvark” would be stored in an array at index 0
—  “beaver” would be stored in an array at index 1
—  “kangaroo” would be stored in an array at index 10
—  “whale” would be stored in an array at index 22

tablel

=> ["aardvark', "beaver', nil, nil, nil,
nil, nil, nil, nil, nil, "kangaroo', nil,
nil, nil, nil, nil, nil, nil, nil, nil,
nil, nil, "whale”™, nil, nil, nil]
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Constant Time Search

def hash_search(table, i1tem)
return table[h(item)].include?(item)
end

>> hash_search(tablel, “kangaroo'™)
= true

>> hash_search(table2, "armadillo™)
—Talse
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Hash function (cont’d)

>> insert(tablel,bunny'™)

>> insert(tablel,bear'™)

>> tablel

= ["aardvark™, "bear', nil, nil, nil, nil,
nil, nil, nil, nil, "kangaroo™, nil, nil,
nil, nil, nil, nil, nil, nil, nil, nil,
nil, "whale™, nil, nil, nil]

If we try to insert “bunny” and “bear” into the hash table, each
word overwrites the previous word since they all hash to index 1.
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Revised Ruby Implementation

>> table2 = Array.new(26)
>> for 1 iIn 0 .. 25 do
table2[i] = [1
end

=L, 1. 0. 01, 0. 0. . 0. 1. . [,
0. 0. 0. 0. . 0. 1. 0. 1. . 0,
1. 0. 0. 01
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Inserting into New Table

def i1nsert(table, item)
index = h(item)
iT not table[index].include?(item) then
table[index] << i1tem
end
return nil
end
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Inserting into new hash table

insert(table2, "aardvark™)

>> insert(table2, beaver™)

>> insert(table2, kangaroo™)

>> insert(table2, "whale'™)

>> insert(table2, "bunny')

>> insert(table2, "bear™)

>> table2

=> [[aardvark™], ["beaver'™, "bunny',

“bear”], [1. 0. 0. O. 0. O. O. .
["kangaroo™], [1, [1. [1. 1. [, [, [1.
1. 00. 1. 0. ["whale”], [1., [1. [11
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Collisions

e “beaver”, “bunny” and “bear” all end up in the same
bucket.

* These are collisions in a hash table.
* Why do we want to minimize collisions?
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Collisions

* The more collisions you have in a bucket, the more
you have to search in the bucket to find the desired
element.

* We want to try to minimize the collisions by creating
a hash function that distribute the keys (strings) into
different buckets as evenly as possible.
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A Poor Attempt

def h(string)
k=0
for 1 In O..string.length-1 do

k = string[i] + k
end
return k
end

h(**hello”) => 532
h(*olleh™) => 532

Permutations still give same index (collision) and numbers are high.
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What’s A Good Hash Function?

* For strings:

— Treat the characters in the string like digits in a
base-256 number.
— Divide this quantity by the number of buckets, k.

— Take the remainder, which will be an integer in the
range 0..k-1.
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Hash Function For Strings

def h(s)
sum = 0O
for 1 in O..s.length-1 do
sum = 256*sum + s[i]
end
return sum % 10

end Number of buckets,
could be anything

>> h(''goat™)
= 2
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Treating Characters As Numbers

>> "a"[0]

=97
>> IIAII [0]
Base 10:
=65 “573” is 5x102 + 7x10! + 3x100 = 573
>> : e tll
S ca Base 256:
="'cat" “cat” is “c"x2562 + “a"x256 + “t"x256°
=99x2562 + 97x256! + 116x256°
>> s[0] = 6513012
=99
>> s[1]
=97
>> s[2]
= 116 15110 Principles of Computing
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Final results

>> table3 = Array.new(10)

>> for 1 iIn 0 .. 9 do
table2[i] = []
end

=[. 0. 0. 0. . 0. 0. 0. . il

>> insert(table3,"aardvark™™)

>> insert(table3, " bear'™) )

>> insert(table3, bunny') S(t)llllligi?)ze SSte
>> insert(table3, "beaver'™) b-words are

>> insert(table3,"dog"™) distributed better.
>> table3

=> [[“bear”], [“bunny”], [1. 0. [“beaver”], [1. . L.
[1.[“aardvark”, “dog”]1]
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Fancier Hash Functions

* How would you hash an integer i?
— Perhaps i % k would work well.

 How would you hash a list?
— Sum the hashes of the list elements.

* How would you hash a floating point number?

— Maybe look at its binary representation and treat
that as an integer?
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Efficiency

* |f the keys (strings) are distributed well throughout
the table, then each bucket will only have a few keys
and the search should take O(1) time.

* Example:
If we have a table of size 1000 and we hash 4000 keys
into the table and each bucket has approximately the
same number of keys (approx. 4), then a search will
only require us to look at approx. 4 keys => O(1)

— But, the distribution of keys is dependent on the keys and
the hash function we use!
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Summary of Search Techniques

Linear search 0, since we're O(n)
given the list
Binary search O(n log n) O(log n)
to sort the list
Hash table O(n) to fill the 0(1)
buckets
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Hash Tables in Ruby

e So far, we looked at hash tables as a means of
determining whether a key is in a list in O(1)
time.

* We can generalize this idea to associate a key
with a value.

e Examples:
— Employee name => Employee number
— Product code => Price
— Name in contacts list => Email address
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Hashes (Associate Arrays) in Ruby

>> h
{"'"Mercedes' => 50000,
"Bentley'" => 120000}

>> h[""Mercedes']
—=50000
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Hash in Ruby (continued)

>> h2 = {:apple => :red,
-banana => :yellow,
:cherry => :red}

>> h2[ :banana]

=:yellow

>> h2._1nvert

={:red => :cherry,

:yellow => :banana}
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Next Week

e Monday: Finish data structures unit with trees
and graphs

* Wednesday and Friday: New unit in data
representation
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