UNIT 5C
Merge Sort

15110 Principles of Computing 1
Carnegie Mellon University

Course Announcements

e Exam information
2:30 Exam: Sections A, B, C, D, E go to Rashid
(GHC 4401) and Sections F, G go to PH 125C.
3:30 Exam: Sections H, |, J, K, L, M, N all go to
Rashid (GHC 4401).
Bring your CMU id!

* A sample exam and extra exercises available in
the Schedule page and Resources page.

e Sunday office hours dedicated to exam review.

15110 Principles of Computing
Carnegie Mellon University

2

Arrays (Review)

* Ruby uses “list” and “array” interchangeably
— We will see later in the course that there are in fact subtle
differences between the two data structures

* An array is an ordered collection of data
— [“cherry”, “apple”, “banana”]
— [8, “cherry”, -58.6, true] not necessarily the same type of
elements
—[] emptyarray

— [[“Max”, 4], [“John”, 1], [“Mary”, 3]] can be nested

15110 Principles of Computing
Carnegie Mellon University

Arrays (continued)

e Examples for creating an array
— a=Array.new #assigns [] to variable a
— a = Array.new(3,0) # assigns [0, 0, 0] to variable a
—a=Array(1..5) #assigns [1,2,3,4,5] to variable a

e Examples for accessing elements of an array
scores = [78, 93, 80, 68]
scores[0] =78
scores[3] = 68

15110 Principles of Computing
Carnegie Mellon University

More examples

e scores =[78, 93, 80, 68]
scores[1..3] =[93,80, 68]
scores[0..2] = [78, 93, 80]
 year = [[“Max”, 4], [“John”, 1], [“Mary”, 3]]
year[0] = [“Max”,4]
year[0] [1] =4
year[0] [0] = “Max”

15110 Principles of Computing
Carnegie Mellon University

More examples
e scores =[78, 93, 80, 68]

scores.length =4
scores.first =78
scores.last = 68
(scores.first) * 2 = 156
scores.include?(85) = false
e year =[[“Max”, 4], [“John”, 1], [“Mary”, 3]]
year.length =3
year.first = [“Max”,4]

15110 Principles of Computing
Carnegie Mellon University

Adding Elements to an Array

e scores =[78, 93, 80, 68]
e The assignment
scores = scores << 85
updates the scores R oo abnd operator

scores = [78, 93, 80, 68, 85]

15110 Principles of Computing
Carnegie Mellon University

Example: Append

e year = [[“Max”, 4], [“John”, 1], [“Mary”, 3]]
 What is the value of the array year after the
following assignment?

year = year << [“Jane”, 2]
year = [[“Max”, 4], [“John”, 1], [“Mary”, 3], [“Jane”,1]]

15110 Principles of Computing
Carnegie Mellon University

Divide and Conquer

In the military: strategy to gain or maintain power

In computation:

— Divide the problem into “simpler” versions of
itself.

— Conquer each problem using the same process
(usually recursively).

— Combine the results of the “simpler” versions
to form your final solution.

Examples: Towers of Hanoi, fractals, Binary Search,

Merge Sort

15110 Principles of Computing 9
Carnegie Mellon University

Merge Sort

Input: Array A of n elements.

Result: Returns a new array containing the same
elements in non-decreasing order.

General algorithm for merge sort:
1. Sort the first half using merge sort. (recursive!)
2. Sort the second half using merge sort. (recursive!)
3. Merge the two sorted halves to obtain the
final sorted array.

15110 Principles of Computing 10
Carnegie Mellon University

Divide (Split)

84 | 27 | 49 | 91 | 32 | 53 | 63 | 17
84 | 27 | 49 | 91 32 | b3 | 63 | 17
84 | 27 49 | 91 32 | 53 63 | 17
84 27 49 91 32 53 63 17
Conquer (Merge)
17 | 27 | 32 | 49 | 53 | 63 | 84 | 91
27 | 49 | 84 | 91 17 | 32 | 53 | 63
27 | 84 49 | 91 32 | 53 17 | 63
84 27 49 91 32 53 63 17

Example 1: Merge

array a array b array c
0O 1 2 3 0O 1 2 3 0 1 2 3 4 5

12 44 58 62 29 31 74 80 12
\//

O 1 2 3 O 1 2 3 0O 1 2 3 4 5

12 44 58 62 29 31 74 80 12 29
_/

O 1 2 3 O 1 2 3 0O 1 2 3 4 5

12 44 58 62 29 31 74 80 12 29 31

O 1 2 3 O 1 2 3 0O 1 2 3 4 5

12 44 58 62 29 31 74 80 12 29 31 44

Example 1: Merge (cont’d)

array a array b array c
0O 1 2 3 0O 1 2 3 0 1 2 3 4 5

12 44 58 62 29 31 74 80 12 29 31 44 58
\—/v

0O 1 2 3 0O 1 2 3 0O 1 2 3 4 5

12 44 58 62 29 31 74 80 12 29 31 44 58 62

- - T

0O 1 2 3 0O 1 2 3 0O 1 2 3 4 5

12 44 58 62 29 31 74 80 12 29 31 44 58 62

Example 2: Merge

58 67 74 90 19 26 31 44 19

58 67 74 90 19 26 31 44 19 26

58 67 74 90 19 26 31 44 19 26 31

58 67 74 90 19 26 31 44 19 26 31 44

58 67 74 90 19 26 31 44 19 26 31 44 58 67 74 90
Merge

Input: Two arrays a and b.

Each array must be sorted already in non-decreasing order.
Result: Returns a new array containing the same
elements merged together into a new array in non-
decreasing order.

We’'ll need two variables to keep track of where we
are in arrays a and b: index_a and index_b.

Set index_a equal to 0.
Set index_b equal to 0.
Create an empty array c.

15110 Principles of Computing

16

Carnegie Mellon University

Merge (cont’d)

4. While index_a < the length of array a and
index_b < the length of array b, do the following:

a. If alindex_a] < b[index_b], then do the following:
i. append alindex_a] on to the end of array c
ii.add 1 to index_a
Otherwise, do the following:
i. append b[index_b] on to the end of array c
ii.add 1toindex_b

15110 Principles of Computing

Carnegie Mellon University 7

Merge (cont’d)

(Once we finish step 4, we’ve added all of the elements of
either array a or array b to array c. The other array still has
some elements left that need to be added to array c.)

5. Ifindex_a < the length of array a, then:
append all remaining elements of array a on to the
end of array c

Otherwise:
append all remaining elements of array b on to the
end of array c

6. Return array c as the result.

15110 Principles of Computing

Carnegie Mellon University 18

Merge in Ruby

def merge(a, b)
index a = 0
index b = 0
c =1
while index_a < a.length and index b < b.length do
if a[index_a] <= b[index_b] then
c << a[index_a]
index_a = index a + 1
else
C << b[index_ b]
index b = index b + 1
end
end

15110 Principles of Computing
Carnegie Mellon University

19

Merge in Ruby (cont’d)

ifT (index_a < a.length) then
for 1 in (index_a..a.length-1) do

c << a[i]
end
else
for 1 in (index_b..b.length-1) do
c << b[i]
end
end
return c

end

15110 Principles of Computing
Carnegie Mellon University

20

10

Merge Sort: Base Case

General algorithm for merge sort:
1. Sort the first half using merge sort. (recursive!)
2. Sort the second half using merge sort. (recursive!)
3. Merge the two sorted halves to obtain the
final sorted array.

What is the base case?
If the list has only 1 element, it is already sorted
so just return the list as the result.

15110 Principles of Computing

Carnegie Mellon University 2t

Merge Sort: Halfway Point

General algorithm for merge sort:
1. Sort the first half using merge sort. (recursive!)
2. Sort the second half using merge sort. (recursive!)
3. Merge the two sorted halves to obtain the
final sorted array.

How do we determine the halfway point where we
want to split the array /list?

First half: 0..list.length/2-1
Second half: list.length/2..list.length-1

15110 Principles of Computing

Carnegie Mellon University 22

11

Merge Sort in Ruby

def msort(list)
return list if list.length == 1 # base case
halfway = list.length/2
listl = list[O..halfway-1]
list2 = list[halfway..list.length-1]
newlistl = msort(listl) # recursive!
newlist2 = msort(list2) # recursive!
newlist = merge(newlistl, newlist2)
return newlist

end

15110 Principles of Computing

Carnegie Mellon University 23

Analyzing Efficiency

e If you merge two lists of size i/2 into one new list of
size i, what is the maximum number of appends
that you must do?

e Clearly, each element must be appended to the
new list at some point, so the total number of
appends is i.

* If you have a set of pairs of lists that need to be
merged (two pairs at a time), and the total number
of elements in all of the lists combined is n, the
total number of appends will be n.

15110 Principles of Computing

Carnegie Mellon University 24

12

How many group merges?

* How many group merges does it take to go from
n groups of size 1 to 1 group of size n?

* Example: Merge sort on 32 elements.
— Break down to groups of size 1 (base case).

— Merge 32 lists of size 1 into 16 lists of size 2. |
— Merge 16 lists of size 2 into 8 lists of size 4.

— Merge 8 lists of size 4 into 4 lists of size 8. — 5=log,32

— Merge 4 lists of size 8 into 2 lists of size 16.
— Merge 2 lists of size 16 into 1 list of size 32.

* In general: log,n group merges must occur.

15110 Principles of Computing, 25
Carnegie Mellon University

It takes log,n iterations to

go from n groups of size 1 to
a single group of size n.

Putting it all together

Total number
of elements
per level is
always n.

It takes n appends to merge all pairs to the next higher level.

15110 Principles of Computing, 26
Carnegie Mellon University

13

Big O

* In the worst case, merge sort requires
O(n log n) time to sort an array with n elements.

Number of operations Order of Complexity

n log,n O(n log n)
4n loggn O(n log n)
nlog,n + 2n O(n log n)
15110 Principles of Computing 27

Carnegie Mellon University

O(N log N)

not drawn to scale
Number of a ()

Operations n log,n = O(n log n)

384 Y

For an n log, n algorithm,
224 the performance is better
than a quadratic algorithm
but just a little worse than
160 96 a linear algorithm.

i

16 32 64 n
(amount of data)

il

15-105 Principles of
Computation, Carnegie 28
Mellon University

14

Comparing Insertion Sort to Merge Sort

(Worst Case)
n isort (n(n+1)/2) msort (n log,n)
8 36 24
16 136 64
32 528 160
210 524,800 10,240
220 549,756,338,176 20,971,520

For array sizes less than 100, there’s not much
difference between these sorts, but for larger arrays
sizes, there is a clear advantage to merge sort.

15110 Principles of Computing

Carnegie Mellon University 29

Sorting and Searching

e Recall that if we wanted to use binary search,
the array must be sorted.

— What if we sort the array first using merge sort?

e Merge sort O(nlogn) (worst case)
* Binary search O(log n) (worst case)
* Total time: O(nlog n) + O(log n) = O(n log n)

(worst case)

15110 Principles of Computing
Carnegie Mellon University

Comparing Big O Functions

Number of 4 ©O2") o(n?) O(n log n)
Operations
Oo(n)

o)

»
»

n
(amount of data)

15110 Principles of Computing

3
Carnegie Mellon University st

Merge Sort: Iteratively

(optional)

* If you are interested, the textbook discusses an
iterative version of merge sort which you can
read on your own.

» This version uses an alternate version of the
merge function that is not shown in the
textbook but is given in the RubyLabs gem.

15110 Principles of Computing

e
Carnegie Mellon University 32

16

Quick Sort

e Uses the technique of divide-and-conquer

1.
2.

Pick a pivot

Divide the array into two subarrays, those that

are smaller a

Put the pivot
sorted arrays

nd those that are greater
in the middle, between the two

15110 Principles of Computing
Carnegie Mellon University

33
33

17

