UNIT 5B
Binary Search

15110 Principles of Computing
Carnegie Mellon University

Course Announcements 1

e Sunday’s review sessions GHC 4303
— Session 1: 6-8 pm
— Session 2: 8-10 pm.

— Sample exam done by CAs and questions from
students (sample exam available at
http://www.cs.cmu.edu/~15110-
s13/schedule.html)

15110 Principles of Computing
Carnegie Mellon University

Course Announcements 2

* Monday office hours 5-10 at GHC 4215, NOT
in clusters
e Exam information

— 2:30 exam: Sections A, B, C, D, E go to Rashid
(GHC 4401) and sections F, G go to PH 125C.

— 3:30 exam: Sections H, |, J, K, L, M, N all go to
Rashid (GHC 4401) .

e Bring your CMU id!

15110 Principles of Computing
Carnegie Mellon University

This Lecture

* A new search technique for arrays called
binary search

* Application of recursion to binary search
e Logarithmic worst-case complexity

15110 Principles of Computing
Carnegie Mellon University

Binary Search

Input: Array A of n unique elements.
— The elements are sorted in increasing order.

Result: The index of a specific element called the key or
nil if the key is not found.

Algorithm uses two variables lower and upper to
indicate the range in the array where the search is
being performed.
lower is always one less than the start of the range
upper is always one more than the end of the range

15110 Principles of Computing
Carnegie Mellon University

Example

lower = -1 upper =9

List already sorted in ascending order.
Suppose we are searching for D.

15110 Principles of Computing
Carnegie Mellon University

Divide and Conquer

lower = -1 upper =4

15110 Principles of Computing
Carnegie Mellon University

Divide and Conquer

[§ b |
A BI C D I F G H
lower =1 upper =4
and soon ...

Each time we look at a smaller portion of the array
within the window and ignore all the elements outside of
the window

15110 Principles of Computing
Carnegie Mellon University

1.
2.
3.

Algorithm

Set lower = -1.
Set upper = the length of the array a

Return BinarySearch(list, key, lower, upper).

BinarySearch(list, key, lower, upper):

1. Return nil if the range is empty.
2. Set mid equal the midpoint between lower and upper
3. Return mid if a[mid] is the key you’re looking for.
4. If the key is less than a[mid] then
return BinarySearch(list,key,lower,mid)
Otherwise, return BinarySearch(list,key,mid,upper).
* Catmegie Mellon Univerity 0
Example 1: Search for 73
1225|3237 |41|48|58 |60 |66 |73 |74|79|83 |91 |95
12125132 |37 |41148|58 |60 |66 |73|74|79|83 |91 |95
12(25(32|37(41|48|58 |60 |66 |73|74|79|83 |91 |95

Found: return 9

Example 2: Search for 42

12|25|32 |37 |41 |48|58 |60 |66 |73|74|79|83 |91

95

12|25|32 |37 |41 |48|58 |60 |66 |73|74|79|83 |91

95

122532 |37 (41|48|58 (60 |66 |73|74|79|83 |91

95

12|25|32|37|41|48|58 |60 |66 |73|74|79|83 |91

95

12|25|32 (3741|4858 |60 |66 |73|74|79|83 |91

95

Not found: return nil

Finding mid

* How do you find the midpoint of the range?
mid = (lower + upper) / 2
Example: lower = -1, upper =9
(range has 9 elements)
mid =4
* What happens if the range has an even
number of elements?

15110 Principles of Computing,
Carnegie Mellon University

12

Range is empty

 How do we determine if the range is empty?

lower + 1 == upper

15110 Principles of Computing 13
Carnegie Mellon University -

Reccursive Binary Search in Ruby

def bsearch(list, key)

return bs_helper(list, key, -1,

list.length)
end

def bs helper(list, key, lower, upper)
return nil if lower + 1 == upper
mid = (lower + upper)/2
return mid if key == list[mid]
iT key < list[mid] then
return bs_helper(list, key,

lower, mid)
else

return bs_helper(list, key, mid, upper)
end

end

15110 Principles of Computing 14
Carnegie Mellon University

Example 1: Search for 73
12| 25|32 |37 (41|48 58 |60 |66 |73 |74|79|83 |91 95
key lower upper
bs helper(list, 73, -1, 15)
mid = 7 and 73 > a[7]
bs helper(list, 73, 7, 15)
mid = 11 and 73 < a[11]
bs helper(list, 73, 7, 11)
mid = 9 and 73 == a[9]
-—-> return 9
Example 2: Search for 42
12| 25|32 |37 (41|48 58 |60 |66 |73 |74|79|83 |91 95
key lower upper
bs helper(list, 42, -1, 15)
mid = 7 and 42 < a[7]
bs helper(list, 42, -1, D)
mid = 3 and 42 > a[3]
bs_helper(list, 42, 3, D)
mid = 5 and 42 < a[5]
bs_helper(list, 42, 3, 5)
mid = 4 and 42 > a[4]
bs_helper(list, 73, 4, 5)
lower+1 == upper

- Return nil.

Instrumenting Binary Search

def bsearch(list, key)
return bs_helper(list, key, -1, list.length, 1)
end

def bs_helper(list, key, lower, upper, count)
print “iteration\t”, “lower\t” + "upper\t\n”
print iteration, “\t”, lower, upper, “\t\n”
return nil if lower + 1 == upper
mid = (lower + upper)/2
return mid if key == list[mid]
iT key < list[mid] then
return bs_helper(list, key, lower, mid, count + 1)
else
return bs_helper(list, key, mid, upper, count + 1)
end
end

a = TestArray.new(100).sort

15110 Principles of Computing

Carnegie Mellon University 7

Iterative Binary Search in Ruby

def bsearch(list,key)

lower = -1

upper = list.length

while true do
mid = (lower+upper) / 2
return nil if upper == lower + 1
return mid Iif key == list[mid]
iIT key < list[mid] then

upper = mid

else
lower = mid
end
end
end
15110 Principles of Computing

Carnegie Mellon University 18

Analyzing Efficiency

For binary search, consider the worst-
case scenario (target is not in array)

How many times can we split the
search area in half before the array
becomes empty?

For the previous examples:
15-->7-->3-->1-->0 ...4times

15110 Principles of Computing
Carnegie Mellon University

19

In general...

Recall the log function:
log,b =c isequivalentto a‘=b
Examples:
log,128 =7
log,n =5 implies n =32
In general, we can split search region in half
Llogznj + 1 times before it becomes empty.

In our example: when there were 15 elements, we
needed 4 comparisons: |_Iog215J +1=3+1=4

15110 Principles of Computing
Carnegie Mellon University

10

Big O

* In the worst case, binary search requires
O(log n) time on a sorted array with n
elements.

— Note that in Big O notation, we do not usually
specify the base of the logarithm. (It’s usually 2.)

e Number of operations Order of Complexity

log,n O(log n)
log,,n O(log n)
2(log,n) +5 O(log n)

Carnegie Mellon University

21

O(log n) (“logarithmic”)

2(log, n) +5
R (log, n)
Number of
Operations
log, n
l0g;o N

n
(amount of data)

15110 Principles of Computing
Carnegie Mellon University

22

11

O(log n)

For a log, algorithm,
If you double the

Number of a number of data elements
Operations the amount of work you do
increases by just one unit
log, n
6 %
5%
1
4 v
16 32 64 n

(amount of data)

15110 Principles of Computing
Carnegie Mellon University

Binary Search (Worst Case)

Number of elements Number of Comparisons

15 4
31 5
63 6
127 7
255 8
511 9
1023 10
1 million 20

15110 Principles of Computing

Carnegie Mellon University 24

12

Binary Search Pays Off

* Finding an element in an array with a million
elements requires only 20 comparisons!

* BUT....
— The array must be sorted.
— What if we sort the array first using insertion sort?

* Insertion sort 0O(n?) (worst case)
* Binary search O(log n) (worst case)
* Total time: 0O(n?) + O(log n) = O(n?)

Luckily there are faster ways to sort in the worst case...

15110 Principles of Computing
Carnegie Mellon University

