UNIT 5A
Recursion: Basics
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Recursion

e A “recursive” function is one that calls itself.
* Infinite loop? Not necessarily.
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Recursive Definitions

Every recursive definition includes two parts:

— Base case (non-recursive)
A simple case that can be done without solving
the same problem again.

— Recursive case(s)
One or more cases that are “simpler” versions
of the original problem.

* By “simpler”, we sometimes mean “smaller” or
“shorter” or “closer to the base case”.
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Example: Factorial

nl=nx(n-1) x(n-2) x~x1

2= 2x1

3= 3x2x1
4= 4x3x2x1
So4! =4 x 3!
And 3! =3 x 2!

What is the base case? 0!=1
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How Recursion Works

41 = 4(3)) = 4(6) = 24
31=3(2!) =3(2)=6
21=2(1)) =2(1)=2
11=1(01)=1(1)=1

Base case

make smaller instances build up
of the same problem the result

15110 Principles of Computing
Carnegie Mellon University

Factorial in Ruby (Recursive)

def factorial (n)

ifn == % base case
return 1
else % recursive case

return n * factorial(n-1)
end
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Fibonacci Numbers

* A sequence of numbers such that each
number is the sum of the previous two
numbers in the sequence, starting the
sequence with 0 and 1.

*01,1,2,3,5,8,13, 21, 34, 55, 89, etc.
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Fibonacci Numbers in Nature

0,1,1,2,3,5,8,13,21, 34,55, 89, 144, 233, etc.
*  Number of branches on a tree.

e Number of petals on a flower.

*  Number of spirals on a pineapple.
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Recursive Definition

e Let fib(n) = the nth Fibonacci number,n >0
— fib(0) =0 (base case)
— fib(1) =1 (base case)
— fib(n) = fib(n-1) + fib(n-2), n>1
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Recursive Fibonacci in Ruby

def fib(n)
iIFTfn=0o0orn==1
return n
else
return fib(n-1) + fib(n-2)
end
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Recursive Definition

5
3 2
2 1 1 1
1 1 1 0 1 0
fib(0) =0
1 0 fib(1) =1
fib(n) = fib(n-1) + fib(n-2), n > 1
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Recursive vs. Iterative Solutions

e For every recursive function, there is an
equivalent iterative solution.

* For every iterative function, there is an
equivalent recursive solution.

* But some problems are easier to solve one
way than the other way.
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Factorial Function (Iterative)

def factorial (n)
result = 1
for 1 In 1..n do
result = result * 1
end

return result
end
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Iterative Fibonacci

def Ffib(n)
Xx =0
next x = 1

for 1 In 1..n do
X, next X = next X, x+next X
end
return X
end Much faster than

the recursive
version. Why?
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Recursive sum of a list

def sumlist(list)

n = list.length
Base case:

iTf n == 0 then L.
The sum of an empty list is 0.
return 0 — Pty

else
return list[0] + sumlist(list[1l..n-1])

end '\
“tail” of list

Recursive case:
The sum of a list is the first element +
the sum of the rest of the list.

end
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Geometric Recursion (Fractals)
e A recursive operation performed on
successively smaller regions.
Sierpinski's
Triangle
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Sierpinski’s Triangle

15110 Principles of Computing,

Carnegie Mellon University 1
. . )
Sierpinski’s Carpet
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Simple Fractal

To draw a fractal with top-left corner (x,y) and a side length of size:

. Draw a white square with top-left corner (x,y) and
a side length of size/2.

. Draw another fractal with top-left corner (x+size/2, y+size/2)
and a side length of size/2. [recursive step]

increasing x

Draw a fractal

with top left corner

at (x+size/2, y+sizel2)
and a side length

of size/2.

)

increasing y
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Simple Fractal

To draw a fractal with top-left corner (x,y) and a side length of size:

. Draw a white square with top-left corner (x,y) and
a side length of size/2.

. Draw another fractal with top-left corner (x+size/2, y+size/2)
and a side length of size/2. [recursive step]

Draw a fractal

with top left corner

at (x+size/2, y+size/2)
and a side length

of size/2.
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Simple Fractal

To draw a fractal with top-left corner (x,y) and a side length of size:

. Draw a white square with top-left corner (x,y) and
a side length of size/2.

o Draw another fractal with top-left corner (x+size/2, y+size/2)
and a side length of size/2. [recursive step]

Draw a fractal

with top left corner

at (x+size/2, y+size/2)
and a side length

of size/2.
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Simple Fractal in Ruby

(not all code shown)

def fractal(x, y, size)
return if size < 2 # base case
draw_square(x, y, size/2)
fractal (x+size/2, y+size/2, size/2)
end

def draw_fractal ()
# initial top-left (X,y) and size
fractal (0, 0, 512)

end
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' RubyLabs:Fractal W=
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Next Lecture

e Binary search: Apply the technique of
recursion in doing search

* Analyze its time complexity
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Famous Puzzle of “Towers of Hanoi”

EXTRA RECURSION EXAMPLE

15110 Principles of Computing

Carnegie Mellon University 2

Towers of Hanoi

A puzzle invented by
French mathematician g e
Edouard Lucas in 1883. —== winedscs.

At a temple far away, priests were led to a courtyard with
three pegs and 64 discs stacked on one peg in size order.

— Priests are only allowed to move one disc at a time
from one peg to another.

Towers of Hanoi

—  Priests may not put a larger disc on top of a smaller
disc at any time.

The goal of the priests was to move all 64 discs from the
leftmost peg to the rightmost peg.

According to the story, the world would end when the
priests finished their work.
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Towers of Hanoi

Problem: Move n discs E
from peg A to peg C using peg B. A B c
1. Move n-1discs from peg A to peg B é
i C. ive st —
using peg C. (recursive step) A 5 c
2.  Move 1 disc from peg A to peg C. é
A B C
3.  Move n-1 discs from peg B to C
using peg A. (recursive step)
A B C
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Towers of Hanoi in Ruby

def towers(n, from_peg, to _peg, using_peg)
if n >= 1 then
towers(n-1, from peg, using_peg, to _peg)
puts ""Move disc from ' + from_peg
+ " to " + to_peg
towers(n-1, using_peg, to_peg, from_peg)
end
end

Inirb: towers(4, A", "C", "B"™)
How many moves do the priests need to move 64 discs?
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