UNIT 4C
Iteration: Scalability & Big O
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Carnegie Mellon University

Announcements

 If you feel that the course is slipping away
please contact the instructors immediately

* The written exam is on Wed. February 20. We
will offer
— A sample exam
— Review sessions

e No programming assignment is due exam’s
week but there will be a problem set
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After 2 Weeks of Programming

some happy
moments ...
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After 2 weeks of Programming

some angry
moments
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This Lecture

* Now it is time to think about our programs

and do some analyses like a computer
scientist
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Efficiency

A computer program should be correct, but it should
also

— execute as quickly as possible (time-efficiency)

— use memory wisely (storage-efficiency)

How do we compare programs (or algorithms in
general) with respect to execution time?

— various computers run at different speeds due to different
processors

— compilers optimize code before execution

— the same algorithm can be written differently depending
on the programming paradigm
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Counting Operations

e We measure time efficiency by considering
“work” done

— Counting the number of operations performed by
the algorithm.

e But whatis an “operation”?

— assignment statements \

— comparisons Think of itin a
machine-independent way

—  function calls
— return statements
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Linear Search

# let n = the length of list.
def search(list, key)
index = 0
while index < list.length do
ifT list[index] == key then
return index

end Best case: the key is the first
index = index + 1 element in the list
end
return nil
end
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Linear Search: Best Case

# let n = the length of list.
def search(list, key)
index = 0
while 1ndex < list.length do
iT list[index] == key then
return index

Y e

end
index = index + 1
end
return nil
end Total: 4
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Linear Search: Worst Case

# let n = the length of list.
def search(list, key)
index = 0
while index < list.length do
ifT list[index] == key then
return index

end Worst case: the key is not an
index = index + 1 element in the list

end
return nil
end
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Linear Search: Worst Case

# let n = the length of list.
def search(list, key)

index = 0 1
while 1ndex < list.length do n+1
iT list[index] == key then n
return index
end
index = index + 1 n
end
return nil 1
end Total: 3n+3
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Asymptotic Analysis

 How do we know that each operation we count

takes the same amount of time?
— We don't.
* So generally, we look at the process more

abstractly

— We care about the behavior of a program in the long
run (on large input sizes)

— We don’t care about constant factors (we care about
how many iterations we make, not how many
operations we have to do in each iteration)
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What Do We Gain?

e Show important characteristics in terms of
resource requirements

e Suppress tedious details
* Matches the outcomes in practice quite well
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Linear Search: Best Case Simplified

# let n = the length of list.
def search(list, key)
index = 0
while index < list.length do 1 iteration
iT list[index] == key then
return index
end
index = index + 1
end
return nil
end
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Linear Search: Worst Case Simplified

# let n = the length of list.
def search(list, key)
index = 0
while 1ndex < list.length do n iterations
iT list[index] == key then
return index
end
index = index + 1
end
return nil
end
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Order of Complexity

e Forvery large n, we express the number of operations
as the (time) order of complexity.

e For asymptotic upper bound, order of complexity is
often expressed using Big-O notation:

Number of operations Order of Complexity

n O(n) Usually doesn't
matter what the

3n+3 O(n) constants are...

2n+8 O(n) we are only
concerned about
the highest power
of n.
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O(n) (“Linear”)

2n+8
A 3n+3 n
Number of
Operations
n
(amount of data)
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Numbgr of , n
Operations

For a linear algorithm,

30
if you double the amount
of data, the amount of work
you do doubles
20 (approximately).
10
10 20 30 n

(amount of data)
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O(1) (“Constant-Time”)

For a constant-time algorithm,

Number of
Ogl)jenr]at?(;r?s i if you double the amount
of data, the amount of work
you do stays the same.
4=0()
4
1=0(1)
1
- >
(amount of data)
 Camegie Melon Unversiy 19
Linear Search
e Best Case: 0(1)
e Worst Case: O(n)
* Average Case: ?

— Depends on the distribution of queries
— But can’t be worse than O(n)
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Recall Insertion Sort

def i1sort (list)
result = [ ]
for val In list do
# some code here to find the
# place to i1nsert val
result.insert(place, val)
end
return result
end

| Constructing the result array by inserting each element in its right place
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Insertion Sort (Destructive)

* Instead of constructing a new sorted list from
scratch, we will “modify” the list we have to
sort
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Insertion Sort (destructive)

# let n = the length of list.
# Tirst copy the original argument array
# “list” so that it 1s not modified
def i1sort(list)
a = list.clone
i =1
while 1 = a.length do
move_left(a, 1)
=i +1
end
return a
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Insertion Sort (move_left)

# let n = the length of list.
def move_left(a, 1)
x = a[i] # x is val to be put in its place

Jj =1i-1

while j >= 0 && a[j] > x do
alj+1] = a[il
1=131-1

end

a[j+1] = x

end
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Insertion Sort: Worst Case

# let n = the length of list.
# Tirst copy the argument array “list” so
# that 1t is not modified
def i1sort(list)
a = list.clone

1 =1
while 1 = a.length do n-1 iter.
move_left(a, 1)
1 =1 +1
end
return a
end 15110 Principles of Computing 25
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Move_left: Worst case

# let n = the length of list.
def move_left(a, 1)

x = a[i] # x is val to be put in its place
Jj =1i-1
while j >= 0 && a[j] > x do 1 iter.
ali+1] = a[il
1=1-1
end
a[j+1] = x

end
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Example: Tracing isort

index 0 1 2 3
D B A
/\_/

move_left(a,1): 1 iteration

1.Cislessthen D
So, D moves to index 1 to make room C
Finally, C is written to index 0

C D B A

Suppose we want to sort in ascending order
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Example: Tracing isort

index 0 1 2 3
C D E A
/\\/ /\\_/

move_left(a,2): 2 iterations

1.Bisless then D

So, D moves to index 2 to make room for B
2. Bis also less then C

So, C moves to index 1 to make room for B
Finally, B is written to index 0
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Example: Tracing isort

index 0 1 2 3
s [ ¢ [p [ ]
N N

move_left(a,3): 3 iterations

1. Ais less then D

So, D moves to index 3 to make room for A
2. Ais also less then C

So, C moves to index 2 to make room for A
3. Ais also less then B

So, B moves to index 1 to make room for A
Finally, A is written to index O

A B C D
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Example: Tracing isort

index 0 1 2 3

D C B A
/\_/move D to index 1

l move_left(a,1): 1 iteration

Cc D B A
move C to index l/\\m6{c to index 2 l move_left(a,2): 2 iterations
B Cc D A

move Btoindex1  oye ¢ 1o index 2MOVe D toindex 3 ' move_left(a,3): 3 iterations

A B C D
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Insertion Sort: Worst Case

(generalized)

e So the total number of operations is
(n for list.clone) + (n-1 move_left’s)

e But each move_left performs i operations,
where i varies from 1 to n-1
n-1 move_left’s =
1+2+3+ ...+ (n-1) operations
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Adding 1 through n

1 + 2 + 3 + +(n-1) SUM
+ (n-1) +(n-2) + (n-3) + + 1 SUM
n + n +n + + n

e 2xSUM=nx(n-1), SUM =nx(n-1)/2
e The total number of operations is:
n+nx(n-1)/2, n+n?/2+n/2=n?%/2+3n/2
Observe that the highest ordered term is n?
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Order of Complexity

Number of operations Order of Complexity

n2 0(n?)

n2/2 +3n/2 0(n?)

2n2 +7 0(n?)
Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.

15110 Principles of Computing 33

Carnegie Mellon University

O(n?) (“Quadratic”)

n2
A N2+ 7 n22+3n/2 -1
Number of
Operations
n
(amount of data)
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O(n?)

Number of a N2
Operations
For a quadratic algorithm,
900 if you double the amount
of data, the amount of work
you do quadruples

(approximately).

400
100
10 20 30 N
(amount of data)
 Carmagie Mellon Unverety” 3
Insertion Sort
* Worst Case: O(n?)
e Best Case: ?
* Average Case: ?

We’ll compare these algorithms with others soon to see how
scalable they really are based on their order of complexities.
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Next Week

* A new technique called recursion
* More sorting and searching using recursion

e Do the online module on recursion as a

preparation for the next lecture (see problem
set 4)
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move_left (alternate version)

# let n = the length of list.
def move_ left(a, 1)
x = a.slicel(1)

J = 1i-1

while jJ >= 0 && a[j] > x do 1 iter.
1=3-1

end

a.insert(j+1, x)
end

but how long do slice! and insert take?
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