UNIT 4C
Iteration: Scalability & Big O

15110 Principles of Computing
Carnegie Mellon University

Announcements

 If you feel that the course is slipping away
please contact the instructors immediately

* The written exam is on Wed. February 20. We
will offer
— A sample exam
— Review sessions

e No programming assignment is due exam’s
week but there will be a problem set

15110 Principles of Computing
Carnegie Mellon University

After 2 Weeks of Programming

some happy
moments ...

15110 Principles of Computing,
Carnegie Mellon University

After 2 weeks of Programming

some angry
moments

15110 Principles of Computing,
Carnegie Mellon University

This Lecture

* Now it is time to think about our programs

and do some analyses like a computer
scientist

15110 Principles of Computing
Carnegie Mellon University

Efficiency

A computer program should be correct, but it should
also

— execute as quickly as possible (time-efficiency)

— use memory wisely (storage-efficiency)

How do we compare programs (or algorithms in
general) with respect to execution time?

— various computers run at different speeds due to different
processors

— compilers optimize code before execution

— the same algorithm can be written differently depending
on the programming paradigm

15110 Principles of Computing 6
Carnegie Mellon University

Counting Operations

e We measure time efficiency by considering
“work” done

— Counting the number of operations performed by
the algorithm.

e But whatis an “operation”?

— assignment statements \

— comparisons Think of itin a
machine-independent way

— function calls
— return statements

15110 Principles of Computing
Carnegie Mellon University

Linear Search

let n = the length of list.
def search(list, key)
index = 0
while index < list.length do
ifT list[index] == key then
return index

end Best case: the key is the first
index = index + 1 element in the list
end
return nil
end

15110 Principles of Computing
Carnegie Mellon University

Linear Search: Best Case

let n = the length of list.
def search(list, key)
index = 0
while 1ndex < list.length do
iT list[index] == key then
return index

Y e

end
index = index + 1
end
return nil
end Total: 4

15110 Principles of Computing
Carnegie Mellon University

Linear Search: Worst Case

let n = the length of list.
def search(list, key)
index = 0
while index < list.length do
ifT list[index] == key then
return index

end Worst case: the key is not an
index = index + 1 element in the list

end
return nil
end

15110 Principles of Computing

Carnegie Mellon University 10

Linear Search: Worst Case

let n = the length of list.
def search(list, key)

index = 0 1
while 1ndex < list.length do n+1
iT list[index] == key then n
return index
end
index = index + 1 n
end
return nil 1
end Total: 3n+3

15110 Principles of Computing 1
Carnegie Mellon University

Asymptotic Analysis

 How do we know that each operation we count

takes the same amount of time?
— We don't.
* So generally, we look at the process more

abstractly

— We care about the behavior of a program in the long
run (on large input sizes)

— We don’t care about constant factors (we care about
how many iterations we make, not how many
operations we have to do in each iteration)

15110 Principles of Computing
Carnegie Mellon University

12

What Do We Gain?

e Show important characteristics in terms of
resource requirements

e Suppress tedious details
* Matches the outcomes in practice quite well

15110 Principles of Computing
Carnegie Mellon University

Linear Search: Best Case Simplified

let n = the length of list.
def search(list, key)
index = 0
while index < list.length do 1 iteration
iT list[index] == key then
return index
end
index = index + 1
end
return nil
end

15110 Principles of Computing

Carnegie Mellon University 4

Linear Search: Worst Case Simplified

let n = the length of list.
def search(list, key)
index = 0
while 1ndex < list.length do n iterations
iT list[index] == key then
return index
end
index = index + 1
end
return nil
end

15110 Principles of Computing 15
Carnegie Mellon University

Order of Complexity

e Forvery large n, we express the number of operations
as the (time) order of complexity.

e For asymptotic upper bound, order of complexity is
often expressed using Big-O notation:

Number of operations Order of Complexity

n O(n) Usually doesn't
matter what the

3n+3 O(n) constants are...

2n+8 O(n) we are only
concerned about
the highest power
of n.

15110 Principles of Computing 16

Carnegie Mellon University

O(n) (“Linear”)

2n+8
A 3n+3 n
Number of
Operations
n
(amount of data)
15110 Principles of Computing 17
Carnegie Mellon University
Numbgr of , n
Operations

For a linear algorithm,

30
if you double the amount
of data, the amount of work
you do doubles
20 (approximately).
10
10 20 30 n

(amount of data)

15110 Principles of Computing 18
Carnegie Mellon University

O(1) (“Constant-Time”)

For a constant-time algorithm,

Number of
Ogl)jenr]at?(;r?s i if you double the amount
of data, the amount of work
you do stays the same.
4=0()
4
1=0(1)
1
- >
(amount of data)
 Camegie Melon Unversiy 19
Linear Search
e Best Case: 0(1)
e Worst Case: O(n)
* Average Case: ?

— Depends on the distribution of queries
— But can’t be worse than O(n)

15110 Principles of Computing 20
Carnegie Mellon University

10

Recall Insertion Sort

def i1sort (list)
result = []
for val In list do
some code here to find the
place to i1nsert val
result.insert(place, val)
end
return result
end

| Constructing the result array by inserting each element in its right place

15110 Principles of Computing

Carnegie Mellon University 2t

Insertion Sort (Destructive)

* Instead of constructing a new sorted list from
scratch, we will “modify” the list we have to
sort

15110 Principles of Computing

Carnegie Mellon University 22

11

Insertion Sort (destructive)

let n = the length of list.
Tirst copy the original argument array
“list” so that it 1s not modified
def i1sort(list)
a = list.clone
i =1
while 1 = a.length do
move_left(a, 1)
=i +1
end
return a

end 15110 Principles of Computing

Carnegie Mellon University 23

Insertion Sort (move_left)

let n = the length of list.
def move_left(a, 1)
x = a[i] # x is val to be put in its place

Jj =1i-1

while j >= 0 && a[j] > x do
alj+1] = a[il
1=131-1

end

a[j+1] = x

end

15110 Principles of Computing

Carnegie Mellon University 24

12

Insertion Sort: Worst Case

let n = the length of list.
Tirst copy the argument array “list” so
that 1t is not modified
def i1sort(list)
a = list.clone

1 =1
while 1 = a.length do n-1 iter.
move_left(a, 1)
1 =1 +1
end
return a
end 15110 Principles of Computing 25

Carnegie Mellon University

Move_left: Worst case

let n = the length of list.
def move_left(a, 1)

x = a[i] # x is val to be put in its place
Jj =1i-1
while j >= 0 && a[j] > x do 1 iter.
ali+1] = a[il
1=1-1
end
a[j+1] = x

end

15110 Principles of Computing

Carnegie Mellon University 26

13

Example: Tracing isort

index 0 1 2 3
D B A
/_/

move_left(a,1): 1 iteration

1.Cislessthen D
So, D moves to index 1 to make room C
Finally, C is written to index 0

C D B A

Suppose we want to sort in ascending order

15110 Principles of Computing

Carnegie Mellon University 21

Example: Tracing isort

index 0 1 2 3
C D E A
/\\/ /_/

move_left(a,2): 2 iterations

1.Bisless then D

So, D moves to index 2 to make room for B
2. Bis also less then C

So, C moves to index 1 to make room for B
Finally, B is written to index 0

15110 Principles of Computing

Carnegie Mellon University 28

14

Example: Tracing isort

index 0 1 2 3
s [¢ [p []
N N

move_left(a,3): 3 iterations

1. Ais less then D

So, D moves to index 3 to make room for A
2. Ais also less then C

So, C moves to index 2 to make room for A
3. Ais also less then B

So, B moves to index 1 to make room for A
Finally, A is written to index O

A B C D

15110 Principles of Computing 29
Carnegie Mellon University

Example: Tracing isort

index 0 1 2 3

D C B A
/_/move D to index 1

l move_left(a,1): 1 iteration

Cc D B A
move C to index l/\\m6{c to index 2 l move_left(a,2): 2 iterations
B Cc D A

move Btoindex1 oye ¢ 1o index 2MOVe D toindex 3 ' move_left(a,3): 3 iterations

A B C D

15110 Principles of Computing 30
Carnegie Mellon University

15

Insertion Sort: Worst Case

(generalized)

e So the total number of operations is
(n for list.clone) + (n-1 move_left’s)

e But each move_left performs i operations,
where i varies from 1 to n-1
n-1 move_left’s =
1+2+3+ ...+ (n-1) operations

15110 Principles of Computing
Carnegie Mellon University

31

Adding 1 through n

1 + 2 + 3 + +(n-1) SUM
+ (n-1) +(n-2) + (n-3) + + 1 SUM
n + n +n + + n

e 2xSUM=nx(n-1), SUM =nx(n-1)/2
e The total number of operations is:
n+nx(n-1)/2, n+n?/2+n/2=n?%/2+3n/2
Observe that the highest ordered term is n?

15110 Principles of Computing
Carnegie Mellon University

32

16

Order of Complexity

Number of operations Order of Complexity

n2 0(n?)

n2/2 +3n/2 0(n?)

2n2 +7 0(n?)
Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.

15110 Principles of Computing 33

Carnegie Mellon University

O(n?) (“Quadratic”)

n2
A N2+ 7 n22+3n/2 -1
Number of
Operations
n
(amount of data)
15110 Principles of Computing 34

Carnegie Mellon University

17

O(n?)

Number of a N2
Operations
For a quadratic algorithm,
900 if you double the amount
of data, the amount of work
you do quadruples

(approximately).

400
100
10 20 30 N
(amount of data)
 Carmagie Mellon Unverety” 3
Insertion Sort
* Worst Case: O(n?)
e Best Case: ?
* Average Case: ?

We’ll compare these algorithms with others soon to see how
scalable they really are based on their order of complexities.

15110 Principles of Computing 36
Carnegie Mellon University

18

Next Week

* A new technique called recursion
* More sorting and searching using recursion

e Do the online module on recursion as a

preparation for the next lecture (see problem
set 4)

15110 Principles of Computing

Carnegie Mellon University 37

move_left (alternate version)

let n = the length of list.
def move_ left(a, 1)
x = a.slicel(1)

J = 1i-1

while jJ >= 0 && a[j] > x do 1 iter.
1=3-1

end

a.insert(j+1, x)
end

but how long do slice! and insert take?

15110 Principles of Computing

Carnegie Mellon University 38

19

