UNIT 2B
An Introduction to Programming
(for loops)

Announcements

Office hours everyday of the week
Academic integrity forms overdue!
Hand in Problem Set 1 now

Should be reading
— EC Chapter 2, BB Chapter 2 pages 19-42

Always check the course Web page

Last Lecture

Basic datatypes
Variables

Expressions
Assignment statements
Methods (functions)

This Lecture

e A control structure for iteration: “for loops”

* More Ruby practice

for Loop

Tor loop variable 1n start .. end do

loop body
end

 The loop body is one or more instructions that you
want to repeat.

e |f start <end, the for loop repeats the loop
body end-start+1 times.

e |f start > end, the entire loop is skipped.

for Loop Example

for 1 In 1..5 do

print ""hello world\n"
end

hello world
hello world
hello world
hello world
hello world

for Loop Example

for 1 In 1..5 do

print 1, '"\n"
end

You can also use
puts 1 instead of print 1, ‘“\n”

O WNBE

for Loop Example

for 1 In 1..5 do
print 1
end

12345

for 1 1n 1..5 do
print 1, “”
end \ white space

12345

15110 Principles of Computing,
Carnegie Mellon University

Assignment Statements

variable = expression

The expression Is evaluated and the
result is stored in the variable, overwriting
the previous contents of the variable.

15110 Principles of Computing,
Carnegie Mellon University

Assignment Statements

statement
X = 150

y = x * 10
y=y+1
X =X +Yy

X y
150 ?
150 1500
150 1501
1651 1501

15110 Principles of Computing,

Carnegie Mellon University

10

A function using a for loop

def sum()
sums the first 3 positive iIntegers
sum = 0
for 1 Iin 1..3 do
sum = sum + 1
end
return sum
end
i sum
Initialize sum ? 0
iteration 1 1 1
lteration 2 2 3
iteration 3 3 6

15110 Principles of Computing, 11
Carnegie Mellon University

Danger!

234560678

If you modify the loop variable
Inside of the for loop, the loop
will reset the loop variable to its
next expected value in the next
iteration.

Programming suggestion:
Do NOT modify the loop
variable inside a for loop.

Generalizing our solution

def sum(n)
sums the first n positive integers
sum = 0

for 1 1n 1..n do

sum sum + 1
end
return sum
end
sum(6) => 21
sum(100) => 5050

sum(15110) => 114163605

An epidemic

def compute_sick(n)
computes total sick after n days
newly sick =1
total _sick =1
for day In 2..n do
each 1teration represents one day
newly sick = newly sick * 2

total sick = total _sick + newly sick
end
return total sick
end Each newly infected person

infects 2 people the next day.

An epidemic (cont’d)

compute _sick(l)
compute_sick(2)
compute_sick(3)
compute_sick(4)
compute_sick(b)
compute_sick(6)
compute_sick(7)
compute_sick(8)
compute_sick(9)
compute_sick(10)
compute_sick(1ll)
compute_sick(12)
compute_sick(13)
compute_sick(14)
compute_sick(1l5)
compute_sick(16)

15

31

63
127
255
511
1023
2047
4095
8191
16383
32767
65535

compute_sick(1l7) => 131071
compute _sick(18) => 262143
compute _sick(19) => 524287
compute_sick(20) => 1048575
compute_sick(21l) => 2097151

In just three weeks, over

2 million people are sick!
(This is what Blown To Bits
means by exponential growth.
We will see important
computational problems that
get exponentially “harder” as
the problems gets bigger.)

Countdown!

def countdown()

for 1 In 1..10 do Why can’t we justuse 10. .1
pr int 11-1 here and print i instead?
print " "
sleep 1 # pauses for 1 sec.

end

end
countdown()

=> 1098 76 54321

Next Week

* New concept: algorithm

 New control structures in Ruby

— While loops
— Conditionals

