UNIT 2A
An Introduction to Programming

15110 Principles of Computing
Carnegie Mellon University

Announcements

* Office hour locations about to be finalized. Check the
office hours link on the Web page:
— Wednesday GHC 5222 (6-7:50)
— Thursday GHC 4215 (7-9:30)
— Others to be announced soon

* If you had a problem submitting your lab and
Autolab shows a grade less than 3, it is an error that
we will fix.

* Please give special accommodation requests to the
instructors
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Last Week

* History Unit
— Key enabling technologies: transistor, integrated
circuit, microprocessor
— Move from big to small, costly to cheap
— Moore's law

— Revolutionary ideas: stored program concept,
internetworking, graphical user interfaces

— People to remember: Babbage, Turing
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This Week

* Introduction to programming with Ruby
— Basic data types: integer, float, string
— Variables
— Expressions
— Function (method) definitions
— Basic control structures
— Predefined modules
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The Ruby Interpreter

e Three tools bundled with the interpreter
— irb: Ruby shell <—— what we will use
— ri: documentation viewer
— gem: package management system

* irb stands for “interactive Ruby”

— As soon as you type in something your computer
will process it

— You can also “load” prewritten programs
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Arithmetic Expressions

* Mathematical Operators

+ Addition

- Subtraction

*  Multiplication ok Exponentiation

/ Division % Modulo (remainder)

* Ruby is like a calculator: type an expression and it tells
you the value.

>>2+3*5
=17
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Expressions: Technical Points

Order of operator precedence:
*%  EEE) * [ 9 HEEE) 4 -

Use parentheses to force alternate precedence
5*6+7 # 5*(6+7)

Left associativity except for **
2+3+4=(2+3)+4
2**3**4=2**(3**4)
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Data Types

* Integers
4 15110 -53 0

* Floating Point Numbers

4.0 -0.803333333333333333
7.34e+014

* Strings
Ilhelloll IIAII e n ey '.15110—313'.

e Booleans
true false

George Boole,
1815-1864




In Ruby:

Integer Division

e 7/2equals3

e 7.0/ 2.0 equals 3.5
e 7/2.0equals ...

e 7.0/ 2equals ...
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Variables

e Avariable is not an “unknown” as in algebra.

* In computer programming, a variable is simply
a place where you can store a value.

>> a=5
=> 5
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Variables

e Avariable is not an “unknown” as in algebra.

* |In computer programming, a variable is simply
a place where you can store a value.

>> =5

5 a 5
>> b=2*a

=10 b: 10
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Variables

e Avariable is not an “unknown” as in algebra.

* |In computer programming, a variable is simply
a place where you can store a value.

>> a=5
=5 a: ”WOOf”
>> b=2*a
=10
b 10
>> a="“Woof”

=“Woof”
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Variable Names

e All variable names must start with a lowercase
letter.

e The remainder of the variable name (if any) can
consist of any combination of uppercase letters,
lowercase letters, digits and underscores (_).

 |dentifiers in Ruby are case sensitive.
Example: Value is not the same as value.
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Write Your Own Methods

def tip (total)
return total * 0.18

end

>> tip(20)
=3.6

>> tip(135.72)
—=24.4296
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Method Syntax

def methodname(parameterlist)
instructions
end

def and end are reserved words and cannot be
used as variable names.
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Methods (cont’d)

The name of a method follows the same rules as
names for variables: start with a lowercase letter.

The parameter list can contain 1 or more
variables that represent data to be used in the
method’s computation.
A method can also have no parameters.
def hello_world()

print "Hello World!\n"
end (\n s a newline character)
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Example: Countertop

&
€ >
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countertop.rb
parameter

def compute_ area(side)
square = side * side
triangle = 0.5 * side / 2 * side / 2
area = square - triangle
return area
end

To run the function in 1rb:
load "countertop;_[‘_tgz__,_ argumen.t |
compute_area(109) (run function with side = 109)
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Methods (cont’d)

To run a method, we say we “call” the method.

A method can return either one answer or no
answer to its “caller”.

The hello_world function does not return
anything to its caller. It simply prin@mething
on the screen. different

The compute_area function does return its
result to its caller so it can use the value in

another computation:
compute _area(109) + compute _area(78)
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Methods (cont’d)

Suppose we write compute_area this way:
def compute_area(side)

square = side * side
triangle = 0.5 * side/2 * side/2
area = square - triangle
print area
end

Now this computation does not work since each

function call prints but returns nothing:
compute area(109) + compute area(78)
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escape.rb

(a function with two parameters)

def compute ev(mass, radius) Comments
# computes escape velocity®  beginwith#
univ_grav = 6.67e-011
return sqrt(2*univ_grav*mass/radius)
end

To run the function for Earth in 1rb:
load "escape.rb"
compute _ev(5.9742e+024, 6378.1)
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Built-In Functions (Methods)

e Lots of math stuff, e.g., sqgrt, log, sin, cos

r =5+ Math.sqrt(2)

alpha = Math.sin(Math::P1/3)

15110 Principles of Computing

Carnegie Mellon University 22

11



Using predefined modules

e Math is a predefined module of methods that we
can use without writing their implementations.
Math.sqrt(16)

Math: Pl
Math.sin(Math::PIl / 2)

 |f we are going to use this module a lot, we can
include it first and then leave off the module
name when we call a function.
include Math
sqrt(16)
sin(Pl /7 2)
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What Could Possibly Go Wrong?

alpha=5
2 +alhpa <—— syntax error

3/0 «——— semantic errors,
sqrt(-1) e.g. calling a function with
sqrt(2, 3) a wrong argument type
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Next Lecture

* For loops: a basic control structure
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