UNIT 2A
An Introduction to Programming

15110 Principles of Computing
Carnegie Mellon University

Announcements

* Office hour locations about to be finalized. Check the
office hours link on the Web page:
— Wednesday GHC 5222 (6-7:50)
— Thursday GHC 4215 (7-9:30)
— Others to be announced soon

* If you had a problem submitting your lab and
Autolab shows a grade less than 3, it is an error that
we will fix.

* Please give special accommodation requests to the
instructors

15110 Principles of Computing
Carnegie Mellon University

Last Week

* History Unit
— Key enabling technologies: transistor, integrated
circuit, microprocessor
— Move from big to small, costly to cheap
— Moore's law

— Revolutionary ideas: stored program concept,
internetworking, graphical user interfaces

— People to remember: Babbage, Turing

15110 Principles of Computing
Carnegie Mellon University

This Week

* Introduction to programming with Ruby
— Basic data types: integer, float, string
— Variables
— Expressions
— Function (method) definitions
— Basic control structures
— Predefined modules

15110 Principles of Computing
Carnegie Mellon University

The Ruby Interpreter

e Three tools bundled with the interpreter
— irb: Ruby shell <—— what we will use
— ri: documentation viewer
— gem: package management system

* irb stands for “interactive Ruby”

— As soon as you type in something your computer
will process it

— You can also “load” prewritten programs

15110 Principles of Computing
Carnegie Mellon University

Arithmetic Expressions

* Mathematical Operators

+ Addition

- Subtraction

* Multiplication ok Exponentiation

/ Division % Modulo (remainder)

* Ruby is like a calculator: type an expression and it tells
you the value.

>>2+3*5
=17

15110 Principles of Computing,
Carnegie Mellon University 6

Expressions: Technical Points

Order of operator precedence:
*% EEE) * [9 HEEE) 4 -

Use parentheses to force alternate precedence
5*6+7 # 5*(6+7)

Left associativity except for **
2+3+4=(2+3)+4
2**3**4=2**(3**4)

15110 Principles of Computing
Carnegie Mellon University

Data Types

* Integers
4 15110 -53 0

* Floating Point Numbers

4.0 -0.803333333333333333
7.34e+014

* Strings
Ilhelloll IIAII e n ey '.15110—313'.

e Booleans
true false

George Boole,
1815-1864

In Ruby:

Integer Division

e 7/2equals3

e 7.0/ 2.0 equals 3.5
e 7/2.0equals ...

e 7.0/ 2equals ...

15110 Principles of Computing 9
Carnegie Mellon University

Variables

e Avariable is not an “unknown” as in algebra.

* In computer programming, a variable is simply
a place where you can store a value.

>> a=5
=> 5

15110 Principles of Computing 10
Carnegie Mellon University

Variables

e Avariable is not an “unknown” as in algebra.

* |In computer programming, a variable is simply
a place where you can store a value.

>> =5

5 a 5
>> b=2*a

=10 b: 10

15110 Principles of Computing 1
Carnegie Mellon University

Variables

e Avariable is not an “unknown” as in algebra.

* |In computer programming, a variable is simply
a place where you can store a value.

>> a=5
=5 a: ”WOOf”
>> b=2*a
=10
b 10
>> a="“Woof”

=“Woof”

12

Variable Names

e All variable names must start with a lowercase
letter.

e The remainder of the variable name (if any) can
consist of any combination of uppercase letters,
lowercase letters, digits and underscores (_).

 |dentifiers in Ruby are case sensitive.
Example: Value is not the same as value.

15110 Principles of Computing
Carnegie Mellon University

Write Your Own Methods

def tip (total)
return total * 0.18

end

>> tip(20)
=3.6

>> tip(135.72)
—=24.4296

15110 Principles of Computing

Carnegie Mellon University 4

Method Syntax

def methodname(parameterlist)
instructions
end

def and end are reserved words and cannot be
used as variable names.

15110 Principles of Computing
Carnegie Mellon University

Methods (cont’d)

The name of a method follows the same rules as
names for variables: start with a lowercase letter.

The parameter list can contain 1 or more
variables that represent data to be used in the
method’s computation.
A method can also have no parameters.
def hello_world()

print "Hello World!\n"
end (\n s a newline character)

15110 Principles of Computing

Carnegie Mellon University 16

Example: Countertop

&
€ >

15110 Principles of Computing,
Carnegie Mellon University

17

countertop.rb
parameter

def compute_ area(side)
square = side * side
triangle = 0.5 * side / 2 * side / 2
area = square - triangle
return area
end

To run the function in 1rb:
load "countertop;_[‘_tgz__,_ argumen.t |
compute_area(109) (run function with side = 109)

15110 Principles of Computing,

Carnegie Mellon University 18

Methods (cont’d)

To run a method, we say we “call” the method.

A method can return either one answer or no
answer to its “caller”.

The hello_world function does not return
anything to its caller. It simply prin@mething
on the screen. different

The compute_area function does return its
result to its caller so it can use the value in

another computation:
compute _area(109) + compute _area(78)

15110 Principles of Computing

Carnegie Mellon University 19

Methods (cont’d)

Suppose we write compute_area this way:
def compute_area(side)

square = side * side
triangle = 0.5 * side/2 * side/2
area = square - triangle
print area
end

Now this computation does not work since each

function call prints but returns nothing:
compute area(109) + compute area(78)

15110 Principles of Computing
Carnegie Mellon University

10

escape.rb

(a function with two parameters)

def compute ev(mass, radius) Comments
computes escape velocity® beginwith#
univ_grav = 6.67e-011
return sqrt(2*univ_grav*mass/radius)
end

To run the function for Earth in 1rb:
load "escape.rb"
compute _ev(5.9742e+024, 6378.1)

15110 Principles of Computing

Carnegie Mellon University 2t

Built-In Functions (Methods)

e Lots of math stuff, e.g., sqgrt, log, sin, cos

r =5+ Math.sqrt(2)

alpha = Math.sin(Math::P1/3)

15110 Principles of Computing

Carnegie Mellon University 22

11

Using predefined modules

e Math is a predefined module of methods that we
can use without writing their implementations.
Math.sqrt(16)

Math: Pl
Math.sin(Math::PIl / 2)

 |f we are going to use this module a lot, we can
include it first and then leave off the module
name when we call a function.
include Math
sqrt(16)
sin(Pl /7 2)

15110 Principles of Computing 23
Carnegie Mellon University -

What Could Possibly Go Wrong?

alpha=5
2 +alhpa <—— syntax error

3/0 «——— semantic errors,
sqrt(-1) e.g. calling a function with
sqrt(2, 3) a wrong argument type

15110 Principles of Computing
Carnegie Mellon University

12

Next Lecture

* For loops: a basic control structure

15110 Principles of Computing

o] 25
Carnegie Mellon University

13

