UNIT 1B A Brief History Of Computing

Electronic Computing (1800's to the Present)

15110 Principles of Computing, Carnegie Mellon University

1

Last Lecture

- Course overview and logistics
 - Learn how to navigate the class Web page
 - Sign on Piazza
 - Find out about labs and office hours
- History of computing
 - Human-operated devices (abacus, Napier's bones)
 - Early mechanical devices (machines of Pascal and Leibniz)

15-110 Principles of Computation, Carnegie Mellon University

-

Today's Lecture

- Continue with mechanical devices
 - Babbage, Hollerith
- Electromechanical computing
 - Harvard Mark 1

15-110 Principles of Computation, Carnegie Mellon University

3

Charles Babbage (1791-1871)

- Mathematician, industrialist, philosopher, politician
- Frustrated by the many errors in printed mathematical tables (sines, cosines, logs, etc.) used in navigation and engineering.
- Observed that many long computations consist of operations that were regularly repeated.

15110 Principles of Computing Carnegie Mellon University

The Difference Engine (1822)

• Computes the value of a polynomial such as

$$f(x) = ax + bx^2 + cx^3 + dx^4 + ex^5$$

for lots of different values of x.

Intended to be steam-powered, fully automatic

15110 Principles of Computing Carnegie Mellon University

5

Who Cares About Polynomials?

- Taylor's Theorem: any differentiable function can be approximated by a polynomial.
 - The more terms in the polynomial, the more accurate the approximation.
 - Example: for x values between around -4 and +4,
 sin(x) can be well approximated by

$$f(x) = x - x^3/6 + x^5/120 - x^7/5040 + x^9/362880$$

15110 Principles of Computing Carnegie Mellon University

Polynomials Without Multiplication

- Polynomials require multiplication, and even worse, exponentiation.
- Multiplication is difficult for mechanical calculators. Can we get rid of it?
- Yes, if...
 - We want to evaluate f(x) for a series of evenly-spaced values f(a), f(a+1), f(a+2), etc.
 - We're willing to compute a few special values by hand: f(a), $\Delta f(a)$, $\Delta^2 f(a)$, $\Delta^3 f(a)$, etc.

15110 Principles of Computing Carnegie Mellon University

7

Method of Finite Differences

```
\begin{split} f(x) &= 2x^3 + 5x^2 - 4x + 3 \\ \Delta f(x) &= f(x+1) - f(x) = 2(x+1)^3 + 5(x+1)^2 - 4(x+1) + 3 \\ &\qquad - (2x^3 + 5x^2 - 4x + 3) \\ &= 6x^2 + 16x + 3 \\ \Delta^2 f(x) &= \Delta f(x+1) - \Delta f(x) = 12x + 22 \\ \Delta^3 f(x) &= \Delta^2 f(x+1) - \Delta^2 f(x) = 12 \text{ constant} \end{split} To get f(x+1) from f(x), use \Delta as the increment: f(x+1) = f(x) + \Delta f(x) \Delta f(x+1) = \Delta f(x) + \Delta^2 f(x) \Delta^2 f(x+1) = \Delta^2 f(x) + \Delta^3 f(x) \Delta^3 f(x+1) = \Delta^3 f(x) \text{ (because it is a constant)} \end{split}
```

Compute these initial values by hand

Method of Finite Differences

$$f(x) = 2x^3 + 5x^2 - 4x + 3$$

Х	$\Delta^3 f(x)$	$\Delta^2 f(x)$	Δf(x)	f(x)
0	12	22	3	3
1	12			
2	12			
3	12			

15110 Principles of Computing Carnegie Mellon University

9

Method of Finite Differences

$$f(x) = 2x^3 + 5x^2 - 4x + 3$$

Х	$\Delta^3 f(x)$	$\Delta^2 f(x)$	Δf(x)	f(x)
0	12	22	3	3
1	12	34	³ 25	[⊸] 6
2	12			
3	12			

15110 Principles of Computing Carnegie Mellon University

Method of Finite Differences

$$f(x) = 2x^3 + 5x^2 - 4x + 3$$

Х	$\Delta^3 f(x)$	$\Delta^2 f(x)$	Δf(x)	f(x)
0	12	22	3_	3
1	12	34	25	6
2	12	46	⁷ 5 ⁹	³ 3 ¹ 1
3	12			

15110 Principles of Computing Carnegie Mellon University

1

Method of Finite Differences

$$f(x) = 2x^3 + 5x^2 - 4x + 3$$

Х	$\Delta^3 f(x)$	$\Delta^2 f(x)$	Δf(x)	f(x)
0	12	22	3	— 6
1	12	34	25	6
2	12	46	³ 59	31
3	12	58	105	³ 90

15110 Principles of Computing Carnegie Mellon University

Method of Finite Differences

- $f(x) = 15x^2 + 110$
- $\Delta f(x) = f(x+1) f(x) =$
- $\Delta^2 f(x) = \Delta f(x+1) \Delta f(x) =$

Х	$\Delta^2 f(x)$	Δf(x)	f(x)
0			
1			
2			
3			

15110 Principles of Computing Carnegie Mellon University

13

Babbage's Difference Engine Computed 7th Degree Polynomials to 31 Digits

http://www.culture.com.au/brain_proj/CONTENT/BABBAGE.HTM

15110 Principles of Computing Carnegie Mellon University

Building the Difference Engine

Photo of the 1832 Fragment of a Difference Engine

Photo of Babbage Difference Engine No. 2 constructed in 1991

(See video)


15110 Principles of Computing Carnegie Mellon University

15

Charles Babbage: A Computing "Rock Star"

- Difference Engine (1822)
 - Never built (he ran out of money)
- Analytical Engine (1834-1836)
 - Babbage's more general "computer"
 - Never built, but its design is considered to be the foundation of modern computing
 - Had all the crucial features:
 - Arithmetic and logical operations
 - Digital data storage
 - Programs stored in memory

15110 Principles of Computing Carnegie Mellon University

Ada Lovelace

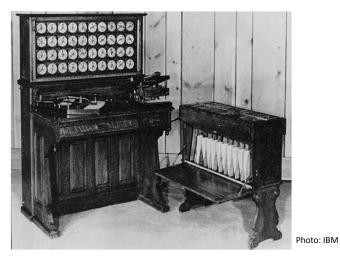
- 1815-1852
- Daughter of poet Lord Byron
- Translated Menabrea's Sketch of the Analytical Engine to English
 - Quadrupled its length by adding lengthy notes and detailed mathematical explanations
- Referred to as the world's first programmer
 - Described how the machine might be configured (programmed) to solve a variety of problems.

15110 Principles of Computing Carnegie Mellon University

17

Herman Hollerith

& The Hollerith Census Machine


- 1880 U.S. Census
 - The amount of data that needed to be analyzed was growing so quickly due to immigration

- Required almost a decade to compute 1880 Census
- In 1882, Hollerith investigated a suggestion by Dr. John Shaw Billings, head of the division of Vital Statistics for the Census Bureau
 - "There ought to be some mechanical way of [tabulating Census data], something on the principle of the Jacquard loom, whereby holes in a card regulate the pattern to be woven."

15110 Principles of Computing, Carnegie Mellon University

Hollerith's Census Machine

15110 Principles of Computing Carnegie Mellon University

19

Hollerith's Census Machine

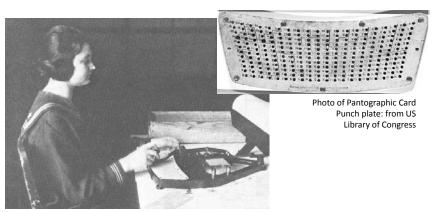
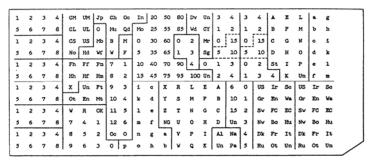
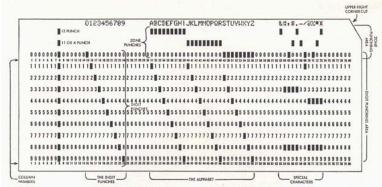


Photo from 1920 Census: Austrian, Geoffrey, Herman Hollerith: Forgotten Giant of Information Processing, Columbia University Press (1982).

15110 Principles of Computing Carnegie Mellon University

Hollerith's Census Machine




Photo of a punch card for the Hollerith machine, from *John McPherson, Computer Engineer*, an oral history conducted in 1992 by William Aspray, IEEE History Center, Rutgers University, New Brunswick, NJ, USA.

- The entire 1890 census data was processed in 3 months and complete 1890 data was published in 1892.
- Total population of the U.S.: 62,622,250

15110 Principles of Computing Carnegie Mellon University

21

The Birth of IBM

An IBM punch card used from 1928 until the 1970s.

 Hollerith forms the Tabulating Machine Company in 1896 which eventually becomes IBM in 1924 through a merger and several name changes.

> 15110 Principles of Computing Carnegie Mellon University

Alan Turing

- Considered the "father" of modern computer science.
- Presented formalisms for the notions of computation and computability in the 1930's.
- Worked at Bletchley Park in Great Britain during WWII to develop Collossus to help break the German Enigma Code.
- Developed the notion in 1950 of a test for machine intelligence now called the Turing Test.
- The Turing Award, the highest award in computing, is named in honor of Alan Turing.

15-110 Principles of Computation, Carnegie Mellon University

23

Harvard Mark I

IBM Automatic Sequence Controlled Calculator

- Developed by Howard Aiken
- Contained more than 750,000 components
 - over 50 feet long
 - 8 feet tall
 - weighed ~5 tons
- Sounded like a "roomful of ladies knitting"

Harvard Mark I (IBM Archives)

First major American development in the computing race 15110 Principles of Computing

15110 Principles of Computing Carnegie Mellon University

Aiken

Next Lecture

- Purely mechanical (Leibniz, Babbage)
- Electro-mechanical (Aiken's Harvard Mark I)
- Purely electronic (vacuum tubes)
 - 1000 times faster than electro-mechanical
- Stored-program digital computers
- Integrated circuits
- Microprocessors
- Quantum computers (in development)

15110 Principles of Computing Carnegie Mellon University