
8/3/2015

1

Unit 12

CONCURRENT PROCESSES

Announcements

 Lab Exam

 PA10

 Final Exam

Concurrency in Real Life

Concurrency is the simultaneous occurrence of

events.

Most complex tasks can be broken down into a
set of simpler activities

 Building a house: bricklaying, carpentry, plumbing,
electrical installation, roofing

 Some of them can overlap and take place

concurrently

8/3/2015

2

Concurrency in Computing

On the Internet: independent, autonomous agents
try to achieve individual and shared goals.

Our local machines can do more than one thing at
a time.

 While using a word processor, we can download files,

manage the print queue, and stream audio.

 Sequential programs: Subprograms do not overlap
in time

Concurrent programs: Subprograms may overlap in
time, their executions proceed concurrently

Why Do We Need It?

 Everything happens at once in the world.

 For example, traffic control, airline seat reservation, process

control, banking

 Performance gain from multiprocessing hardware

 For example, Google, Yahoo, divide each query into thousands of
little queries and use thousands of small computers.

 For example, a supercomputer with thousands of processors can

compute a weather prediction much faster than a single
processor.

 Increased application throughput (amount of work that a

computer can do in a given time period).

 When one application is waiting for I/O another can continue its
execution.

A Useful abstraction: Process

 Process: A program in execution

 Program along with its data in memory, open files, open

communication channels etc.

 Concurrency involves

 multiple processes running simultaneously on multiple
processors or

 on a single processor time-sharing the processor.

8/3/2015

3

Sharing a Processor

If only one processor (CPU) is available, the only way to run
multiple processes is by switching between them.

Only one process is using the CPU at a given time even though
they look like they are running in parallel to an observer.

Process 1:

Process 2:

run run run

run run

time

run

Multiple Processors

 If you have multiple CPUs, you may execute multiple

processes in parallel (simultaneously). Really!

Process 1:

Process 2:

run run run

run run run

on processor 1

on processor 2

time

Sharing Memory

• Processes may share

resources such as

memory

• For example, only one

processor at a time

may execute an

instruction that touches

the shared memory.

The memory hardware
makes the others wait.

Process 1

Private

memory1

Process 2

Shared Memory

Program1

Private

memory2

Program2

10

Shared memory

can be used for

communication

between processes

8/3/2015

4

Distributed Computing

Processes may be running on distributed

systems

For example, a cluster of workstations,
communicating via sockets

run Process 1:

Process 2:

run

run run run

communication

by message passing

Some steps are executed simultaneously but

some are dependent on another

There are many ways to execute two
processes concurrently.

12

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S1

S3

S2

S3

S1

S1

S2

S3

S2

S3

S1

S1

S2

S2

S3

S3

S1

S2

S1

S2

S3

S3

S1

S2

S1

S2

S3

S3

S1

S1

S2

S2

S3

S3

S1

S1

S2

S2

S3

S3

S1

S1

S2

S3

S2

S3

S1

S1

S2

S3

S2

S3

S1

S1

S2

S2

S3

S3

S1

S2

S3

S1

S2

S3

S1

S1

S2

S2

S3

S3

S1

S1

S2

S2

S3

S3

S1

S1

S2

S2

S3

S3

S1

S1

S2

S2

S3

S3

S1

S1

S2

S3

S2

S3

S1

S2

S1

S2

S3

S3

S1

S2

S1

S2

S3

S3

S1

S2

S1

S3

S2

S3

Several possible

interleavings of steps.

The green process executes steps

S1 S2 S3 in the given order.
The blue process executes steps

S1 S2 S3 in the given order.

Critical Sections

 Often, a process really needs exclusive access to some

data.

 A critical section is a sequence of steps that have exclusive

access to the shared memory.

 Real Life Examples

 Crossing a traffic intersection

 A bank with many ATMs

 Making a ticket reservation

13

8/3/2015

5

Critical Section Example

Consider a bank with multiple ATM’s.

At one, Mr. J requests a withdrawal of $10.

At another, Ms. J requests a withdrawal of
$10 from the same account.

The bank’s computer executes:
1. For Mr. J, verify that the balance is big enough.

2. For Ms. J, verify that the balance is big enough.

3. Subtract 10 from the balance for Mr. J.

4. Subtract 10 from the balance for Ms. J.

 The balance went negative if it was less than $20!

14

Vocabulary Reminder

• Race condition: A behavior in concurrent processing

where proper functioning depends on the timing of other

uncontrollable events

• A critical section is a piece of code that accesses a
shared resource that must not be concurrently accessed

by more than one process

15

Deadlock

 Deadlock is the condition when two or more processes are

all waiting for some shared resource, but no process

actually has it to release, so all processes to wait forever
without proceeding.

 It’s like gridlock in real traffic.

16

8/3/2015

6

PIPELINING

17

Pipelining

 Pipelining is similar to an assembly line.

 Instead of completing one computation before
starting another, each computation is split into

simpler sub-steps, and computations are started
as others are in progress.

18

Laundry Without Pipelining

19

 0 30 60 90 120 150 180 210 240 270 300 330 360 min.

Washing, Drying and Ironing four loads of laundry.

W D I W D I W D I W D I

W D I

Washing (30 min) Drying (45 min) Ironing (15 min)

WITHOUT

PIPELINING:

6 hr

8/3/2015

7

Laundry With Pipelining

20

 0 30 60 90 120 150 180 210 240 270 300 330 360 min.

Washing, Drying and Ironing four loads of laundry.

W D I

W D I

W D I

W D I

W D I

Washing (30 min) Drying (45 min) Ironing (15 min)

WITH

PIPELINING:

3 hr 45 min

The length of the

pipeline depends
on the length of

the longest step.

Pipelining in Computing

• Fetch instruction from memory

• Decode the instruction

• Read data from registers

• Execute the instruction

• Write the result into a register

21

F D R E W

F D R E W

F D R E W

F D R E W

Execution of instruction 1

Execution of instruction 2

time

Execution of instruction 3

Execution of

 instruction 4

Dealing with Dependencies

ADD R3, R1

ADD R5, R3

ADD R8, R7

ADD R11, R10

22

This instruction depends on the result

of the previous instruction.

"Add the contents of R1 and R3

and store the results in R3.”

What does this mean for pipelining?

8/3/2015

8

Dealing with Dependencies

ADD R3, R1

ADD R5, R3

ADD R8, R7

ADD R11, R10

23

This instruction depends on the result

of the previous instruction. (This will

hold up the pipeline. We cannot do the

R step for the second instruction

before finishing the W step for the first

instruction.)

"Add the contents of R1 and R3

and store the results in R3.”

F D R E W

F D E W R

instruction 1

instruction 2

Dealing with Dependencies

ADD R3, R1

ADD R5, R3

ADD R8, R7

ADD R11, R10

ADD R3, R1

ADD R8, R7

ADD R11, R10

ADD R5, R3

24

This instruction depends on the result

of the previous instruction. (This will

hold up the pipeline. We cannot do the

R step for the second instruction

before finishing the W step for the first

instruction.)

"Add the contents of R1 and R3

and store the results in R3.”

Reorder the instructions to minimize

the delay on the pipeline due to the

dependency, if possible.

F D R E W

F D R E W

F D R E W

F D R E W

Matrix Multiplication

25

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

grade

student1

student2

student3

student4

student5

student6

student7

student8

8/3/2015

9

Matrix Multiplication

26

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

grade

student1 91.2

student2

student3

student4

student5

student6

student7

student8

0 + 95*0.15 + 90*0.1 + 93*0.15 + 91*0.15 + 85*0.15 + 92*0.3 = 91.2

Matrix Multiplication

15110 Principles of Computing, Carnegie
Mellon University

27

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

grade

student1 91.2

student2 74.0

student3

student4

student5

student6

student7

student8

0 + 73*0.15 + 80*0.1 + 75*0.15 + 63*0.15 + 79*0.15 + 75*0.3 = 74.0

Matrix Multiplication

15110 Principles of Computing, Carnegie
Mellon University

28

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

grade

student1 91.2

student2 74.0

student3 85.3

student4

student5

student6

student7

student8

0 + 85*0.15 + 73*0.1 + 80*0.15 + 85*0.15 + 88*0.15 + 91*0.3 = 85.3

....and so on...

8/3/2015

10

Matrix Multiplication

29

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

grade

student1 91.2

student2 74.0

student3 85.3

student4 53.0

student5 95.0

student6 75.0

student7 92.0

student8 69.2

If each multiply/add takes 1 time unit,

this non-pipelined matrix multiplication takes 48 time units.

Faster Matrix Multiplication
using Pipelining

30

95

73 90

85 80 93

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

grade

student1

student2

student3

student4

student5

Student6

student7

student8

student1

student2

student3

student4

student5

student6

student7

student8

0

W

N

S

E=W+(N*S)

KEY:

0.15 0.1 0.15 0.15 0.15 0.3

31

73 90

85 80 93

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

0.15 0.1 0.15 0.15 0.15 0.3
grade

student1

student2

student3

student4

student5

student6

student7

student8

14.25 0

W

N

S

E=W+(N*S)

KEY:

8/3/2015

11

32

85 80 93

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

0.15 0.1 0.15 0.15 0.15 0.3
grade

student1

student2

student3

student4

student5

student6

student7

student8

10.95 23.25 0

W

N

S

E=W+(N*S)

KEY:

33

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

0.15 0.1 0.15 0.15 0.15 0.3
grade

student1

student2

student3

student4

student5

student6

student7

student8

12.75 18.95 37.2 0

W

N

S

E=W+(N*S)

KEY:

34

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

0.15 0.1 0.15 0.15 0.15 0.3
grade

student1

student2

student3

student4

student5

student6

student7

student8

7.5 20.05 30.2 50.85 0

W

N

S

E=W+(N*S)

KEY:

8/3/2015

12

35

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
grade

student1

student2

student3

student4

student5

student6

student7

student8

15.0 14.0 32.05 39.65 63.6 0

W

N

S

E=W+(N*S)

KEY:

36

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
grade

student1

student2

student3

student4

student5

student6

student7

student8

11.25 24.5 21.5 44.8 51.5 91.2 0

W

N

S

E=W+(N*S)

KEY:

37

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
grade

student1 91.2

student2

student3

student4

student5

student6

student7

student8

13.5 18.75 39.2 30.5 58.0 74.0 0

W

N

S

E=W+(N*S)

KEY:

8/3/2015

13

38

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
grade

student1 91.2

student2 74.0

student3

student4

student5

student6

student7

student8

13.2 21.5 30.0 53.6 38.9 85.3 0

W

N

S

E=W+(N*S)

KEY:

39

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
grade

student1 91.2

student2 74.0

student3 85.3

student4

student5

student6

student7

student8

21.2 33.5 41.25 68.0 53.0 0

W

N

S

E=W+(N*S)

KEY:

....and so on...

40

0.15 0.1 0.15 0.15 0.15 0.3
grade

student1 91.2

student2 74.0

student3 85.3

student4 53.0

student5 95.0

student6 75.0

student7 92.0

student8 69.2

0

If each multiply/add takes 1 time unit,

this pipelined matrix multiplication takes only 13 time units.

8/3/2015

14

Summary

 Concurrency means execution of multiple processes at the

same time. It may be implemented by interleaving steps of

processes on a single processor or using multiple processors.
The way we reason about concurrency in both scenarios is

similar. We cannot make arbitrary assumptions about timings

of steps so we have to consider all interleavings of steps to be
possible.

 Processes may interact and coordinate in complex ways.

Care must be taken when they share common resources, to

deal with race conditions and to avoid deadlocks.

 Pipelining is a method that increases the throughput of a
system when processing a stream of data. It is an example of

using concurrency to make processing faster by processing

parts of the data in parallel.

41

