Unit 12

CONCURRENT PROCESSES \qquad
\qquad
\qquad
\qquad
\qquad

Announcements

- Lab Exam
- PA10
- Final Exam
\qquad

Concurrency in Real Life

- Concurrency is the simultaneous occurrence of events.
- Most complex tasks can be broken down into a set of simpler activities
\square Building a house: bricklaying, carpentry, plumbing, electrical installation, roofing
- Some of them can overlap and take place concurrently

Concurrency in Computing

\square On the Internet: independent, autonomous agents try to achieve individual and shared goals.

- Our local machines can do more than one thing at a time.
- While using a word processor, we can download files, manage the print queue, and stream audio.
\square Sequential programs: Subprograms do not overlap in time
\square Concurrent programs: Subprograms may overlap in time, their executions proceed concurrently

Why Do We Need It?

- Everything happens at once in the world.
- For example, traffic control, airline seat reservation, process control, banking
- Performance gain from multiprocessing hardware
- For example, Google, Yahoo, divide each query into thousands of little queries and use thousands of small computers.
- For example, a supercomputer with thousands of processors can compute a weather prediction much faster than a single processor.
- Increased application throughput (amount of work that a computer can do in a given time period).
- When one application is waiting for I/O another can continue its execution.

A Useful abstraction: Process

- Process: A program in execution
- Program along with its data in memory, open files, open communication channels etc.
- Concurrency involves
- multiple processes running simultaneously on multiple processors or
- on a single processor time-sharing the processor.

Sharing a Processor

If only one processor (CPU) is available, the only way to run multiple processes is by switching between them.

Only one process is using the CPU at a given time even though they look like they are running in parallel to an observer.

Multiple Processors

If you have multiple CPUs, you may execute multiple processes in parallel (simultaneously). Really!

Sharing Memory

- Processes may share resources such as memory
- For example, only one processor at a time may execute an instruction that touches the shared memory. The memory hardware makes the others wait.

$\underbrace{10}_{10}$
\qquad

Distributed Computing

Processes may be running on distributed systems

- For example, a cluster of workstations, communicating via sockets

There are many ways to execute two processes concurrently.
The green process executes steps S1 S2 S3 in the given order. The blue process executes steps

S1	
S2	
S3	S1 S2
S3	

$\begin{array}{\|ll\|} \hline \text { S1 } & \\ \text { S2 } & \\ \text { S3 } & \\ & \text { S1 } 1 \\ & \text { S2 } \\ & \text { S2 } \end{array}$	S1 S2 S1 S3 s2 S3	$\begin{array}{\|ll} \hline \mathrm{S} 1 & \\ \text { S2 } & \\ & \text { S1 } \\ & \text { S2 } \\ \text { S3 } & \mathrm{s} 3 \\ \hline \end{array}$
$\begin{array}{\|ll} \hline \text { S1 } & \\ & \text { S1 } \\ & \text { S2 } \\ \text { S3 } & \\ \text { S3 } & \text { s3 } \end{array}$	$\begin{array}{\|lll} \hline \text { S1 } & \\ & \text { s1 } \\ & \text { s2 } \\ \text { s2 } & \text { s3 } \end{array}$	$\begin{array}{\|ll} \hline \text { S1 } & \\ & \text { S1 } \\ & \text { S2 } 23 \\ & \text { s2 } \\ \text { s3 } & \\ \hline \end{array}$
$\begin{array}{lll} \hline & \mathrm{s} 1 \\ \mathrm{~S} 1 & \mathrm{~s} 2 \\ \mathrm{~s} 2 & \\ \mathrm{~s} 3 & \mathrm{~s} 3 \\ \hline \end{array}$	$\begin{array}{ll} & \text { S1 } \\ \text { S1 } \\ & \text { S2 } \\ \\ \text { S23 } \\ \text { S2 } \\ \text { S3 }\end{array}$	S1 S2 S1 S2 S3 S3

	S3
S3	
$\begin{aligned} & \text { S1 } \\ & \text { S2 } \\ & \text { S3 } \end{aligned}$	
S3	
	S1
	S2
S1	
	S3
S3	

$\begin{array}{ll} \hline \text { s1 } & \\ \text { s2 } & \\ \text { s3 } & \\ \text { S2 } & \text { s2 } \\ & \text { s3 } \end{array}$	$\begin{array}{ll} \hline \text { s1 } & \\ \mathrm{s} 1 \\ \mathrm{~s} 2 & \mathrm{~s} 2 \\ \mathrm{~s} 3 & \mathrm{~s} \\ & \mathrm{~s} 3 \end{array}$
$\begin{array}{\|ll\|} \hline & \text { s1 } \\ \text { s2 } & \\ \text { s3 } & \text { s2 } \\ \text { S3 } & \text { s3 } \end{array}$	$\begin{array}{ll} & \text { S1 } \\ \text { s1 } & \\ \text { S2 } & \\ & \text { S2 } \\ & \text { S3 } \end{array}$
$\begin{array}{\|ll\|} \hline & \mathrm{s} 1 \\ \mathrm{~s} 1 \\ \mathrm{~s} 2 \\ \hline & \mathrm{~s} 3 \\ \mathrm{~s} 2^{2} & \\ \mathrm{~s} 3 & \end{array}$	$\begin{array}{\|lr\|} \hline & \text { S1 } \\ & \text { S2 } \\ & \text { S3 } \\ \text { S1 } & \\ \text { S2 } & \\ \text { S3 } & \end{array}$

<

Critical Sections

- Often, a process really needs exclusive access to some data.
- A critical section is a sequence of steps that have exclusive access to the shared memory.
- Real Life Examples
- Crossing a traffic intersection
- A bank with many ATMs
- Making a ticket reservation

Critical Section Example

\qquad

- Consider a bank with multiple ATM's.
- At one, Mr. J requests a withdrawal of \$10.
- At another, Ms. J requests a withdrawal of $\$ 10$ from the same account.
-The bank's computer executes:

1. For Mr. J, verify that the balance is big enough.
2. For Ms. J, verify that the balance is big enough.
3. Subtract 10 from the balance for Mr. J.
4. Subtract 10 from the balance for Ms. J.
${ }_{14}$ The balance went negative if it was less than $\$ 20$!

Vocabulary Reminder

- Race condition: A behavior in concurrent processing where proper functioning depends on the timing of other uncontrollable events

A critical section is a piece of code that accesses a shared resource that must not be concurrently accessed by more than one process

Deadlock

- Deadlock is the condition when two or more processes are all waiting for some shared resource, but no process actually has it to release, so all processes to wait forever without proceeding.
- It's like gridlock in real traffic.

\square

PIPELINING

Pipelining

\square Pipelining is similar to an assembly line.

- Instead of completing one computation before starting another, each computation is split into simpler sub-steps, and computations are started as others are in progress.

Laundry Without Pipelining

Laundry With Pipelining

Pipelining in Computing

- Fetch instruction from memory
- Decode the instruction
- Read data from registers
- Execute the instruction
- Write the result into a register

$\xrightarrow[\text { time }]{ }$

Dealing with Dependencies

What does this mean for pipelining?

Dealing with Dependencies

ADD R3, R1 "Add the contents of R1 and R3
ADD R5, R3 This instruction depends on the result of the previous instruction. (This will
ADD R8, R7 hold up the pipeline. We cannot do the R step for the second instruction
ADD R11, R10 before finishing the W step for the first instruction.)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \square \qquad

Dealing with Dependencies

Matrix Multiplication

student1	95	90	93	91	85	92
student2	73	80	75	63	79	75
student3	85	73	80	85	88	91
student4	50	65	50	60	56	47
student5	100	95	98	96	96	90
studenti6	75	75	75	75	75	75
student7	90	80	80	90	100	100
student8	88	80	80	70	60	55

Matrix Multiplication

$0+95^{\star} 0.15+90^{\star} 0.1+93^{\star} 0.15+91^{\star} 0.15+85^{\star} 0.15+92^{\star} 0.3=91.2$

	hw				paper	exam1
	exam2	exam3	final			
	student1	95	90	93	91	85
student2	73	80	75	63	79	75
	student3	85	73	80	85	88
student4	50	65	50	60	56	47
	student5	100	95	98	96	96
student6	75	75	75	75	75	75
	student7	90	80	80	90	100
student8	88	80	80	70	60	55

\[

\]

\qquad

\[

\]

\qquad
\qquad
\qquad
\qquad $\square-2$ \qquad

15110 Principles of Computing. Carnegie Mellon Univesity

Matrix Multiplication

$0+73^{*} 0.15+80^{*} 0.1+75^{*} 0.15+63^{*} 0.15+79^{*} 0.15+75^{*} 0.3=74.0$

	hw	paper	exam1	exam2	exam 3	final				grade
student1	95	90	93	91	85	92	hw	weight	student1 student2	91.2
student2	73	80	75	63	79	75		0.15		74.0
student3	85	73	80	85	88	91	paper	0.1	dent3	
student4	50	65	50	60	56	47	exam1	0.15	student4	
student5	100	95	98	96	96	90	exam2	0.15	student5	
student6	75	75	75	75	75	75	exam3	0.15	student6	
student7	90	80	80	90	100	100	final	0.3	student7	
student8	88	80	80	70	60	55			student8	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

(5110 Principles of Computing. Carnegie

Matrix Multiplication

$0+85^{\star} 0.15+73^{\star} 0.1+80^{\star} 0.15+85^{\star} 0.15+88^{\star} 0.15+91^{\star} 0.3=85.3$
....and so on...

$$
\begin{aligned}
&
\end{aligned}
$$

Matrix Multiplication

If each multiply/add takes 1 time unit,
this non-pipelined matrix multiplication takes 48 time units.

student1	hw	paper	exam1	am	eam	final
	95	90	93	91	85	92
student2	73	80	75	63	79	75
student3	85	73	80	85	88	91
student4	50	65	50	60	56	47
student5	100	95	98	96	96	90
student6	75	75	75	75	75	75
student7	90	80	80	90	100	100
student8	88	80	80	70	60	55

[^0]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Faster Matrix Multiplication
using Pipelining

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0.15 0.1 0.15 0.15 0.15 0.3 .					
			75	96	47
		80	90	75	90
			70	100	
				60	100
					55

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary

- Concurrency means execution of multiple processes at the same time. It may be implemented by interleaving steps of processes on a single processor or using multiple processors. The way we reason about concurrency in both scenarios is similar. We cannot make arbitrary assumptions about timings of steps so we have to consider all interleavings of steps to be possible.
- Processes may interact and coordinate in complex ways. Care must be taken when they share common resources, to deal with race conditions and to avoid deadlocks.
- Pipelining is a method that increases the throughput of a system when processing a stream of data. It is an example of using concurrency to make processing faster by processing parts of the data in parallel.

[^0]:

