
7/27/2015

1

UNIT 10A

Discrete Simulation

1

15110 Principles of Computing,
Carnegie Mellon University

Last Time

 How to generate pseudo-random numbers

 Using randomness in interesting applications

 Monte Carlo simulations: running many
experiments with random inputs to approximate
an answer to a question when an analytical
solution is impossible or to hard to obtain

Waking Up

 Understanding systems

 Data Visualization

 http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_v

e_ever_seen?language=en

 http://www.ted.com/talks/deb_roy_the_birth_of_a_word?language

=en

 http://www.carbonmap.org/

 Simulations

(4:15, 9:30)

http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen?language=en
http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen?language=en
http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen?language=en
http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen?language=en
http://www.ted.com/talks/deb_roy_the_birth_of_a_word?language=en
http://www.ted.com/talks/deb_roy_the_birth_of_a_word?language=en
http://www.ted.com/talks/deb_roy_the_birth_of_a_word?language=en
http://www.carbonmap.org/
http://www.carbonmap.org/

7/27/2015

2

Understanding Systems

 Data Visualization and Simulations are different

 We try to visualize the results of simulations to make it

easy to see/understand the systems

because generally what we try to see / understand or

predict is complicated because of the nature of systems.

Systems

 Collection of tracks and railway cars  railroad system

 Collection of HW and SW  computer System

 Collection of teachers, students  school system

Dynamic, Interactive, Complicated

How Can we Study a System?

 Experiment with the actual system

 Experiment with a model of the system

 Physical model

May not exist, may be unsafe to work with, expensive to build and
modify, some change too slowly over time

 Mathematical model

 Analytical solution: Equations or systems may be too complex
for closed-form or analytical solution

 Simulation: The imitative representation of the functioning of
one system or process by means of the functioning of another,

for example a computer program.

Classification due Law and Kelton Simulation, Modeling and Analysis

7/27/2015

3

Computer simulation is a process of making a computer

behave like a cow, an airplane, a battlefield, a social

system, a terrorist, a HIV virus, a growing tree, a

manufacturing plant, a mechanical system, an electric

circuit, a stock market, a galaxy, a molecule, or any

other thing. This is done with a specific purpose,

mainly in order to carry out some “what if”

experiments over the computer model instead of the

real system.

 Modeling and Simulation,

 S. Raczynski

Uses of Simulation

 Performance optimization, safety engineering, testing of new

technologies.

 Gaining a better understanding of natural and human

systems, and making predictions.

 Providing lifelike experiences in training, education, games.

8

Large Scale Simulations

Computing power of today enables large

scale simulations. For example,
 Department of Defense: Battle simulations

 National Center for Atmospheric Research : 1,000

years of climactic changes
http://www.youtube.com/watch?v=d8sHvhLvfBo

 Blue Brain Project at EPFL to reverse engineer the
human brain

http://www.youtube.com/watch?v=ySgmZOTkQA8

9

http://www.youtube.com/watch?v=d8sHvhLvfBo
http://www.youtube.com/watch?v=d8sHvhLvfBo
http://www.youtube.com/watch?v=d8sHvhLvfBo
http://www.youtube.com/watch?v=ySgmZOTkQA8

7/27/2015

4

Advantages of Using Simulation

 If we use simulation we can

 Control sources of variation

 Choose the scale of time

 Stop and review

 Replicate results more easily

Models

 A model is an abstraction of the real system.

It represents the system and the rules that govern the

behavior of the system.

 The model represents the system itself, whereas the
simulation represents the operation of the system over

time.

11

Modeling Concerns

Abstraction: In building models a major issue is to achieve a certain
level of accuracy while keeping the complexity manageable

 Identify factors that are the most relevant to the functioning of the

system.

 How important is time evolution? (Static vs. dynamic models)

 How important is it to capture continuous behavior over time?
(Discrete vs. continuous models)

 Discrete models: essential variables are enumerable such as integers

 Continuous models: essential variables range over non-enumerable
sets such as real numbers

 Do parts of the system exhibit random behavior?

(Deterministic vs. stochastic models)

12

our focus

7/27/2015

5

Computational Science

 Computational sciences use computational models

(special kind of mathematical models) as the basis of

obtaining scientific knowledge.

 Unifies

 Modeling, algorithms, simulations

 Computing environment developed to solve science,
engineering, medicine, and humanities problems

 Helps explain and predict phenomena using a

mechanistic view

13

Simulation Models are Descriptive

 They tell us how a system works under given conditions

but not how to set the conditions to make the system

work best

 Simulation does not “optimize” but it helps us in finding an
optimal set of parameter settings.

DISCRETE SIMULATION:

A Simple Example

15

7/27/2015

6

Discrete Time and Discrete Events

 Real time vs. model time

 In simulating the movements of a galaxy one hour simulation

may cover billions of years

 In discrete simulation we assume time changes in
discrete steps (ticks) and the states of simulated entities

change instantaneously

Experimenting with Models

 NetLogo is a programmable modeling environment for
simulating natural and social phenomena using discrete
simulation.

 You can learn more about it and download it for free from
https://ccl.northwestern.edu/netlogo/.

 It also comes with the Models Library, a large collection
of pre-written simulations that can be used and modified.

 In this lecture we will do an example based on
Wilensky, U. (1998). NetLogo Virus model.
http://ccl.northwestern.edu/netlogo/models/Virus.
Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL.

Discrete Simulation of Disease Spread

 We are going to use a dynamic, discrete, stochastic

simulation model

 We want to capture how the disease spreads over time

 We model time discretely as a sequence of days, and use
discrete variables to capture the health state of each person

 There is randomness in how the virus spreads

 Simulate the system execution as a sequence of discrete

events that change the state of the system

instantaneously at each time step

https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/models/Virus

7/27/2015

7

Example: Flu Virus Simulation

 Goal: Develop a simple simulation that shows graphically

how disease spreads through a population.

19

Modeling the Spread of Flu Virus

 Every person is either healthy, infected, contagious or
immune. We assume that “infected” means infected but
not contagious.

 Each day, a healthy person comes in contact with 4
random people. If any of those random people is
contagious, then the healthy person becomes infected.

 It takes one day for the infected person to become
contagious.

 After a person has been contagious for 4 days, then the
person is non-contagious and cannot spread the virus
nor can the person get the virus again due to immunity.

20

Displaying the Population

200
pixels

200 pixels

(0,0)
+x

+y

21

Assumption:

The population
consists of 400

people each of
which is represented

by a cell in the grid.

For simplicity, assume
that two cells being a

adjacent does NOT
mean that they are

physically close.

7/27/2015

8

Graphical Simulation

22

Simulation captures the evolution of the health state of the population over time.

It evolves in discrete steps: change occurs instantaneously as a new day begins.

Displaying the Population

200
pixels

200 pixels

(0,0)
+x

+y

23

Data of 400 people
in 20x20 matrix
 data[0][0]
 data[0][1]
 ...
 data[20][20]

A grid to visualise
200 x 200 pixel

Displaying One Person

grid expands this way

g
rid

 e
x
p

a
n

d
s th

is w
a

y
 200 pixels – 20 columns

2
0

0
 p

ixels – 2
0

 ro
w

s

(0,0)

(10,10)

+ 10

+ 10

7/27/2015

9

More Generally For Any Person

row 1

col 1

(col*10, row*10)

(col*10 + 10, row*10 + 10)

grid expands this way

g
rid

 e
x
p

a
n

d
s th

is w
a

y

Person stored as matrix data[row, col]
will be displayed at these coordinates:

create_rectangle(col*10, row*10,
 col*10 + 10, row*10 + 10, fill=...

Health States

0 white healthy

1 pink infected

2 red contagious (day 1)

3 red contagious (day 2)

4 red contagious (day 3)

5 red contagious (day 4)

6 purple immune (non-contagious)

26

HEALTHY = 0

INFECTED = 1

DAY1 = 2

DAY2 = 3

DAY3 = 4

DAY4 = 5

IMMUNE = 6

The health state of the population will be represented using
a 20 by 20 matrix where each entry has one of the values above.

Running the Code

27

import tkinter
from tkinter import Canvas
from random import randrange
from time import sleep

Constants for health states of an individual
HEALTHY = 0
INFECTED = 1
DAY1 = 2
DAY2 = 3
DAY3 = 4
DAY4 = 5
IMMUNE = 6

7/27/2015

10

Checking Health State

#returns True if person (matrix[r][c]) is healthy
def healthy(matrix, r, c):
 return matrix[r][c] == HEALTHY

#returns True if person (matrix[r][c]) is infected
def infected(matrix, r, c):
 return matrix[r][c] == INFECTED

#returns True if person (matrix[r][c]) is contagious
def contagious(matrix, r, c):
 return matrix[r][c] >= DAY1 and matrix[r][c] <= DAY4

#returns True if person (matrix[r][c]) is immune
def immune(matrix, r, c):
 return matrix[r][c] == IMMUNE

28

def simNextDay(data):
 nextDayData = [] # create new matrix and initialize
 for i in range(20):
 nextDayData.append([0] * 20)
 for i in range(20): # create next day
 for j in range(20):
 if immune(data, i, j):
 nextDayData[i][j] = IMMUNE
 elif infected(data,i,j) or contagious(data,i,j):
 nextDayData[i][j] = data[i][j] + 1
 elif healthy(data, i, j):
 nextDayData[i][j] = meetPeople(data, i, j)
 return newMatrix

Updating the matrix

29

These functions
return Boolean value

def meetPeople(currMatrix, row, col):
 for counter in range(4): # repeat 4 times
 if contagious(currMatrix, randrange(20), randrange(20)):
 return INFECTED
 return currMatrix[row][col]

def display(matrix, c):
 for row in range(len(matrix)):
 for col in range(len(matrix[0])):
 person = matrix[row][col]
 if person == HEALTHY:
 color = "white"
 elif person == INFECTED:
 color = "pink"
 elif person >= DAY1 and person <= DAY4:
 color = "red"
 else: # non-contagious or wrong input
 color = "purple"
 c.create_rectangle(col*10, row*10,
 col*10 + 10, row*10 + 10,
 fill = color)

Displaying the matrix

31

Create_rectangle (topleft_x, topleft_y,

 bottomright_x, bottomright_y, optional params)

7/27/2015

11

Testing display

def test_display():
 window = tkinter.Tk()
 # create a canvas of size 200 X 200
 c = Canvas(window,width=200,height=200)
 c.pack()
 matrix = []
 # create a randomly filled matrix
 for i in range(20):
 row = []
 for j in range(20):
 row.append(randrange(7))
 matrix.append(row)
 # display the matrix using your display function
 display(matrix,c)

32

33

def simulateFlu(numOfDays):
 window = tkinter.Tk()
 # create a canvas of size 200 X 200
 c = Canvas(window,width=200,height=200)
 c.pack()

 # initialize matrix a to all healthy individuals
 population = []
 for i in range(20):
 population.append([0] * 20)

 # infect one random person
 population[randrange(20)][randrange(20)] = INFECTED
 display(population, c)
 sleep(0.3) # Wait in order to show 1st infection

 # run the simulation for required num of days
 for day in range(0, numOfDays):
 c.delete(tkinter.ALL)
 population = simNextDay(population)
 display(population,c)
 sleep(0.3) # Wait in order to show change
 c.update() #Force changes to display -update screen

What if Our Model Changes?

 If a healthy person contacts a contagious person, she

gets sick 40% of the time.

34

def meetPeople(currMatrix, row, col):

 for counter in range(4): # repeat 4 times

 if contagious(currMatrix, randrange(20), randrange(20))

 and randrange(100) < 40 :

 return INFECTED

 return currMatrix[row][col]

7/27/2015

12

What if Our Model Changes?(cont’d)

 The current model does not capture neighbor

relationship. The adjacency of 2 cells does not indicate

that they are neighbors.

 What if we used to grid to capture neighbor relationship
and assumed that a healthy person gets infected if they

have at least one contagious neighbor.

35

Neighbors

cell = matrix[i][j]

north = matrix[i-1][j] NO!

if i == 0: YES!

 north = None

else:

 north = matrix[i-1][j]

36

Next Time

 Continuous simulation

37

