
UNIT 8B
Computer Organization:

Levels of Abstraction

1

Last Time
• Boolean Logic (Algebra)

– Truth Tables

– Properties of AND and OR

– De Morgan’s Law

• Basic Gates:
 AND, OR, NOT, NAND, NOR, XOR

– How we can combine them to implement circuits
that compute specific functions
(also expressed as Boolean expressions).

2

MORE CIRCUIT EXAMPLES

9

Adding Binary Numbers

A: 0 0 1 1

B: 0 1 0 1

 --- --- --- ---

 0 1 1 1 0

10

A

B
Sum

Adding two 1-bit numbers

without taking the carry into

account

How can we handle the carry?

Sum = A  B

Adding Binary Numbers

A: 0 0 1 1

B: 0 1 0 1

 --- --- --- ---

 0 1 1 1 0

11

A

B
Sum

Carry

Half Adder: adds

two single digits

A Full Adder

12

A

B

S Cout

Cin
A B Cin Cout S

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A Full Adder

13

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

A

B

S Cout

S = A  B  Cin

Cout = ((A  B)  Cin)  (A  B)

Cin

A Full Adder

14

A

B

S Cout

S = A  B  Cin

Cout = ((A  B)  Cin)  (A  B)

S: 1 when there is an odd

number of bits that are 1

C out : 1 if both A and B are 1 or,

one of the bits and the carry in

are 1.

Cin
A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full Adder (FA)

15

1-bit

Full

Adder

A B

Cin Cout

S

S = A  B  Cin

Cout = ((A  B)  Cin)  (A  B)

More abstract

representation

of the above circuit.

Hides details of the

circuit above.

8-bit Full Adder

16

1-bit

Full

Adder

A0 B0

Cin

S0

1-bit

Full

Adder

A1

B1

S1

1-bit

Full

Adder

A7

B7

Cout

S7

1-bit

Full

Adder

A2

B2

S2

...

8-bit

FA

A B

Cin Cout

S

8   8

  8

More abstract

representation

of the above circuit.

Hides details of the

circuit above.

Control Circuits

• In addition to circuits for basic logical and

arithmetic operations, there are also circuits that

determine the order in which operations are

carried out and to select the correct data values

to be processed.

17

Multiplexer (MUX)

18

http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html

• A multiplexer chooses one of its inputs.

 2n input lines, n selector lines, and 1 output line

A B F

0 0 D1

0 1 D2

1 0 D3

1 1 D4

D3
MUX

A B

F

D1
D2

D4

hides details of the

circuit on the left

Arithmetic Logic Unit (ALU)

22

OP1OP0

http://cs-alb-pc3.massey.ac.nz/notes/59304/l4.html

OP0 OP1 F

0 0 A  B

0 1 A  B

1 0 A

1 1 A + B

Carry In & OP

Depending on the OP code Mux chooses

the result of one of the functions (and, or, identity, addition)

Flip Flop

• A flip flop is a sequential circuit that is able to maintain

(save) a state.

– Example: D (Data) Flip-Flop – sets output Q to input D

when clock turns on. (Images from Wikipedia)

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
23

Clock
Clock

S=Set Q to 1,

R=Reset Q to 0

//upload.wikimedia.org/wikipedia/en/7/74/Edge_triggered_D_flip-flop.png
//upload.wikimedia.org/wikipedia/commons/8/8c/D-Type_Flip-flop.svg

BUILDING A COMPLETE

COMPUTER FROM PARTS

24

Computing Machines

• An instruction is a single arithmetic or logical

operation.

• A program is a sequence of instructions that causes

the desired function to be calculated.

• A computing system is a combination of program

and machine (computer).

• How can we build a computing system that calculates

the desired function specified by a program?

Stored Program Computer

26

http://cse.iitkgp.ac.in/pds/notes/intro.html

A stored program computer is electronic hardware

that implements an instruction set.

Von Neumann Architecture

• Bid idea: Data and instructions to manipulate the

data are both bit sequences

• Modern computers built according to the Von

Neumann Architecure includes separate units

– To process information (CPU): reads and executes

instructions of a program in the order prescribed by the

program

– To store information (memory)

27

Stored Program Computer

28

http://cse.iitkgp.ac.in/pds/notes/intro.html

adder, multiplier,

multiplexor, etc.

small amount

of memory in

the CPU

Central Processing Unit (CPU)

• A CPU contains:

– Arithmetic Logic Unit to perform computation

– Registers to hold information

• Instruction register (current instruction being executed)

• Program counter (to hold location of next instruction in memory)

• Accumulator (to hold computation result from ALU)

• Data register(s) (to hold other important data for future use)

– Control unit to regulate flow of information and operations

that are performed at each instruction step

29

Memory

• The simplest unit of storage is a bit (1 or 0). Bits are

grouped into bytes (8 bits).

• Memory is a collection of cells each with a unique

physical address.

– We use the generic term cell rather than byte or word because

the number of bits in each addressable location varies from one

machine to another.

– A machine that can generate, for example, 32-bit addresses,

can utilize a memory that contains up to 232 memory cells.

30

Memory Layout

31

Content

50

42

85

71

99

104:

108:

100:

112:

116:

Address

We saw this picture in Unit 6.

It hid the bit representation

for readability. Assumes that

memory is byte addressable

and each integer occupies 4 bytes .

Content

… 01100100

… 01010100

… 01010101

… 01000111

… 01100011

01101000:

01101100:

01100100:

01110000:

01110100:

Address

In this picture and in reality,

addresses and memory contents

are sequences of bits.

Stored Program Computer

32

adder, multiplier,

multiplexor, Etc.

instruction fetch,

decode,

execute

program counter,

instruction register,

Etc.

Two specialized registers: the instruction register holds the current

instruction to be executed and the program counter contains the address

of the next instruction to be executed.

Processing Instructions

• Both data and instructions are stored in memory as bit

patterns

– Instructions stored in contiguous memory locations

– Data stored in a different part of memory

• The address of the first instruction is loaded into

the program counter and and the processing cycle

starts.

33

Fetch-Decode-Execute Cycle

• Modern computers include control logic that

implements the fetch-decode-execute cycle

introduced by John von Neumann:

– Fetch next instruction from memory into the instruction

register.

– Decode instruction to a control signal and get any data it

needs (possibly from memory).

– Execute instruction with data in ALU and store results

(possibly into memory).

– Repeat.

34

Note that all of these steps are implemented with circuits of the kind we have seen in this unit.

POWER OF ABSRACTION

Using Abstraction in Computer Design

• We can use layers of abstraction to hide details of the computer

design.

• We can work in any layer, not needing to know how the lower

layers work or how the current layer fits into the larger system.

 transistors

 gates

 circuits (adders, multiplexors …)

 central processing units (ALU, registers …)

 computer

• A component at a higher abstraction layer uses components from a

lower abstraction layer without having to know the details of how it is

built. It only needs to know what it does.

 36

Low

High

Abstraction in Programming

• The set of all operations that can be executed by a processor is
called its instruction set.

– Instructions are built into hardware: electronics of the CPU
recognize binary representations of the specific instructions. That
means each CPU has its own machine language that it understands.

• But we can write programs without thinking about on what
machine our program will run. This is because we can write
programs in high-level languages that are abstractions of machine
level instructions.

37

A High-Level Program

This programs displays "Hello, World!"

print "Hello world!"

A Low-Level Program

Obtaining Machine Language Instructions

• Programs are typically written in higher-level languages
and then translated into machine language (executable
code).

• A compiler is a program that translates code written in
one language into another language.

• An interpreter translates the instructions one line at a
time into something that can be executed by the
computer’s hardware.

40

Summary

• A computing system is a combination of program

and machine (computer). In this lecture, we

focused on how a machine can be designed using

levels of abstraction:

 gates  circuits for elementary operations 

 basic processing units  computer

