

Announcements

Bring ear buds or headphones to lab!

Representing and Manipulating Data

Last Unit

- How to represent data as a sequence of bits
- How to interpret bit representations
- Use of levels of abstraction in representing more complex information (music, pictures) using simpler building blocks (numbers)

This Unit

- How sequences of bits are implemented using electrical signals, and manipulated by circuits
- Use of levels of abstraction in designing more complex computer components from simpler components

Foundations

Boolean logic is the logic of digital circuits

Implementing Bits

- Computers compute by manipulating electricity according to specific rules.
- We associate electrical signals inside the machine with bits.
 Any electrical device with two distinct states (e.g. on/off switch, two distinct voltage or current levels) could implement our bits.
- The rules are implemented by electrical circuits.

Conceptualizing bits and circuits

• **ON** or **1** : **True**

• **OFF** or **0** : **False**

circuit behavior:

expressed in Boolean logic or Boolean algebra

Boolean Logic (Algebra)

Computer circuitry works based on **Boolean Logic** (Boolean Algebra): operations on **True (1)** and **False (0)** values.

А	В	A ∧ B (A AND B) (conjunction)	A ∨ B (A OR B) (disjunction)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Α	⊸A (NOT A) (negation)
0	1
1	0

A and B in the table are Boolean variables,
 AND and OR are operations (also called functions).

Boolean Logic & Truth Tables

Example: You can think of A ∧ B below as

15110 is fun and 15110 is useful

where A stands for the statement 15110 is fun,

B stands for the statement 15110 is useful.

A	В	A ∧ B (A AND B) (conjunction)	A ∨ B (A OR B) (disjunction)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

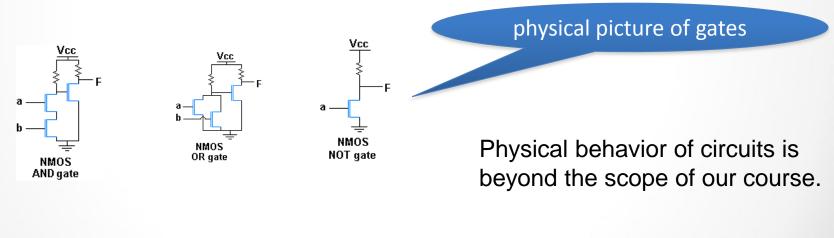
Α	⊸A (NOT A) (negation)
0	1
1	0

Logic gates

the basic elements of digital circuits

Logic Gates

- A gate is a physical device that implements a Boolean operator by performing basic operations on electrical signals.
- Nowadays, gates are built from transistors.



$$\begin{array}{c}
A \\
B
\end{array}$$
 $\begin{array}{c}
A \\
A \\
B
\end{array}$
 $\begin{array}{c}
A \\
A \\
B
\end{array}$

$$A \lor B$$
 $B \lor C$
 $B \lor C$
 $C \lor C$

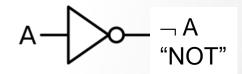
logical picture of gates

AND, OR, NOT Gates

Α	В	A ∧ B (A AND B) (conjunction)	A ∨ B (A OR B) (disjunction)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Α	⊸A (NOT A) (negation)
0	1
1	0

$$A \lor B$$
 "OR"



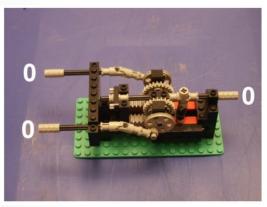
Truth tables define the input - output behavior of logic gates.

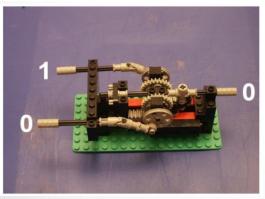
A Mechanical Implementation

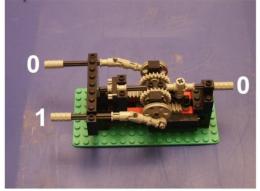
Push-pull logic AND gate

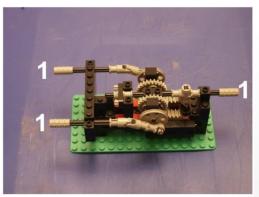
For an input pushed-in lever represents 1

For an output pushed-in lever represents 0









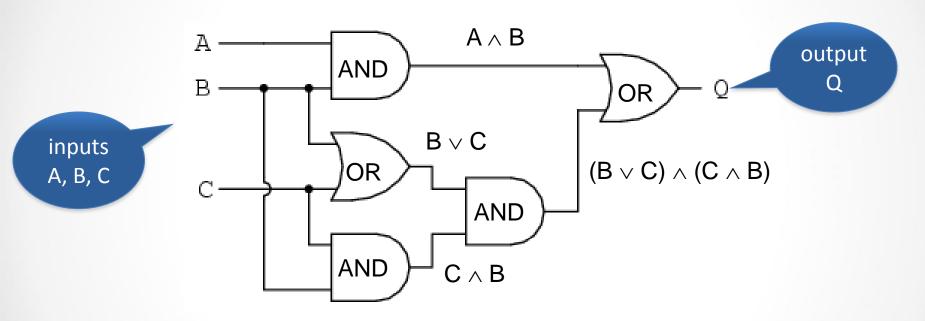
Source: randomwraith.com by Martin Howard

Combinational circuits

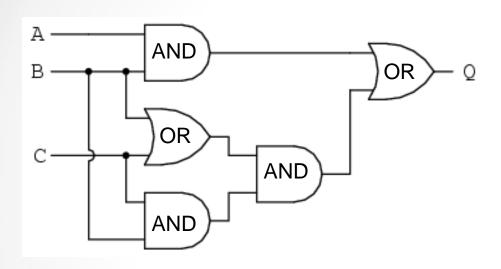
combinations of logic gates

Combinational Circuits

The logic states of inputs at any given time determine the state of the outputs.



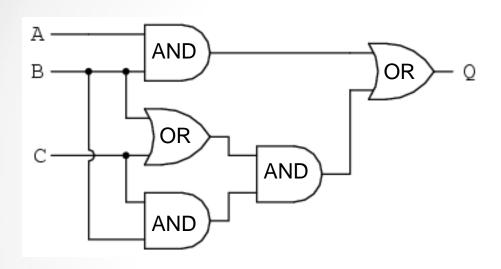
What is Q?
$$(A \land B) \lor ((B \lor C) \land (C \land B))$$



$$Q = (A \wedge B) \vee ((B \vee C) \wedge (C \wedge B))$$

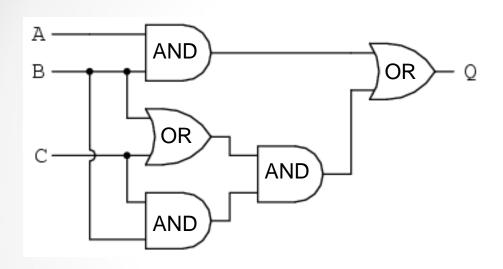
Α	В	С	Q
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

How do I know that there should be 8 rows in the truth table?

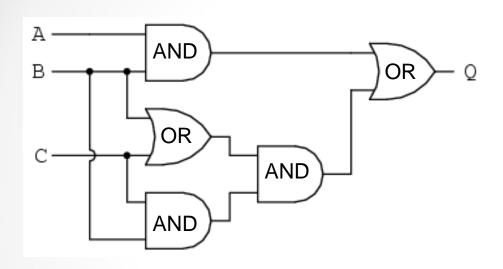


$$Q = (A \land B) \lor ((B \lor C) \land (C \land B))$$

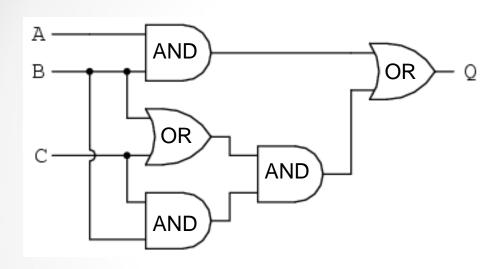
Α	В	С	Q
0	0	0	0
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	



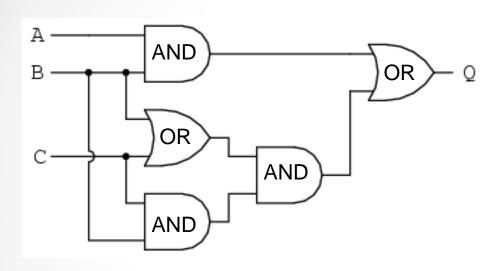
Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	



Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	



Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	
1	0	1	
1	1	0	
1	1	1	

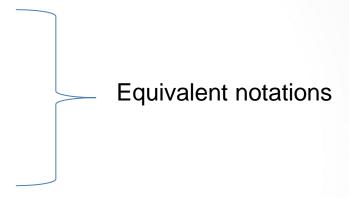


$$Q = (A \wedge B) \vee ((B \vee C) \wedge (C \wedge B))$$

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	
1	1	0	
1	1	1	

Describing Behavior of Circuits

- Boolean expressions
- Circuit diagrams
- Truth tables



Manipulating circuits

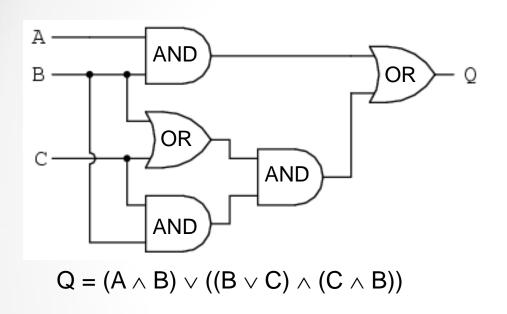
Boolean algebra and logical equivalence

Why manipulate circuits?

- The design process
 - simplify a complex design for easier
 manufacturing, faster or cooler operation, ...

 Boolean algebra helps us find another design guaranteed to have same behavior

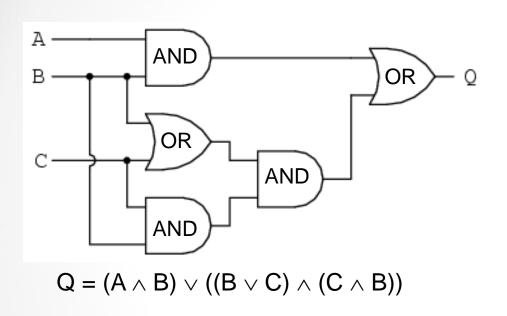
Logical Equivalence



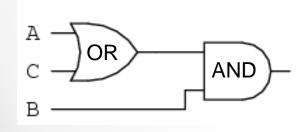
A	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Can we come up with a simpler circuit implementing the same truth table? Simpler circuits are typically cheaper to produce, consume less energy etc.

Logical Equivalence



Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1



$$Q = B \wedge (A \vee C)$$

This smaller circuit is logically equivalent to the one above: they have the same truth table. By using laws of Boolean Algebra we convert a circuit to another equivalent circuit.

Laws for the Logical Operators ∧ and ∨ (Similar to × and +)

• Commutative:
$$A \wedge B = B \wedge A$$
 $A \vee B = B \vee A$

• Associative:
$$A \wedge B \wedge C = (A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$A \lor B \lor C = (A \lor B) \lor C = A \lor (B \lor C)$$

• Distributive:
$$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$$

$$A \lor (B \land C) = (A \lor B) \land (A \lor C)$$

• Identity:
$$A \wedge 1 = A$$
 $A \vee 0 = A$

• Dominance:
$$A \wedge 0 = 0$$
 $A \vee 1 = 1$

• Idempotence:
$$A \wedge A = A$$
 $A \vee A = A$

• Complementation:
$$A \land \neg A = 0$$
 $A \lor \neg A = 1$

• Double Negation:
$$\neg \neg A = A$$

Laws for the Logical Operators ∧ and ∨ (Similar to × and +)

• Commutative:
$$A \wedge B = B \wedge A$$
 $A \vee B = B \vee A$

• Associative:
$$A \wedge B \wedge C = (A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$A \lor B \lor C = (A \lor B) \lor C = A \lor (B \lor C)$$

• Distributive:
$$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$$

$$A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)$$

Not true for + and ×

$$A \wedge 1 = A$$

$$A \vee 0 = A$$

• • • • • •

The A's and B's here are schematic variables! You can instantiate them with any expression that has a Boolean value:

$$(x \lor y) \land z = z \land (x \lor y)$$
 (by commutativity)
 $A \land B = B \land A$

Applying Properties for ∧ and ∨

Showing
$$(\mathbf{x} \wedge \mathbf{y}) \vee ((\mathbf{y} \vee \mathbf{z}) \wedge (\mathbf{z} \wedge \mathbf{y})) = \mathbf{y} \wedge (\mathbf{x} \text{ or } \mathbf{z})$$

Commutativity $A \wedge B = B \wedge A$

$$(\mathbf{x} \wedge \mathbf{y}) \vee ((\mathbf{z} \wedge \mathbf{y}) \wedge (\mathbf{y} \vee \mathbf{z}))$$

Distributivity $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$

$$(\mathbf{x} \wedge \mathbf{y}) \vee (\mathbf{z} \wedge \mathbf{y} \wedge \mathbf{y}) \vee (\mathbf{z} \wedge \mathbf{y} \wedge \mathbf{z})$$

Associativity, Commutativity, Idempotence
$$(\mathbf{x} \wedge \mathbf{y}) \vee ((\mathbf{z} \wedge \mathbf{y}) \vee (\mathbf{y} \wedge \mathbf{z}))$$

Commutativity, idempotence $A \wedge A = A$

$$((\mathbf{y} \wedge \mathbf{x}) \vee (\mathbf{y} \wedge \mathbf{z}))$$

Distributivity (backwards) $(A \wedge B) \vee (A \wedge C) = (A \wedge (B \vee C))$

$$(\mathbf{y} \wedge (\mathbf{x} \vee \mathbf{z}))$$

Conclusion:
$$(\mathbf{x} \wedge \mathbf{y}) \vee ((\mathbf{y} \vee \mathbf{z}) \wedge (\mathbf{z} \wedge \mathbf{y})) = \mathbf{y} \wedge (\mathbf{x} \vee \mathbf{z})$$

Extending the system

more gates and DeMorgan's laws

More gates (NAND, NOR, XOR)

Α	В	A nand B	A nor B	A xor B
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0

nand ("not and"): A nand B = not (A and B)

$$\begin{array}{c} A \\ B \end{array} \longrightarrow \begin{array}{c} \neg(A \land B) \end{array}$$

nor ("not or"): A nor B = not (A or B)

$$\begin{array}{c} A \\ B \end{array} \longrightarrow \neg (A \lor B)$$

xor ("exclusive or"):
 A xor B = (A and not B) or (B and not A)

$$A \oplus B$$

A curious fact

- Functional Completeness of NAND and NOR
 - Any logical circuit can be implemented using NAND gates only

Same applies to NOR

DeMorgan's Law

Nand:
$$\neg(A \land B) = \neg A \lor \neg B$$

Nor:
$$\neg (A \lor B) = \neg A \land \neg B$$

DeMorgan's Law

```
Nand: \neg(A \land B) = \neg A \lor \neg B
  if not (x > 15 \text{ and } x < 110): ...
     is logically equivalent to
  if (not x > 15) or (not x < 110): ...
Nor: \neg (A \lor B) = \neg A \land \neg B
  if not (x < 15 \text{ or } x > 110): ...
     is logically equivalent to
  if (not x < 15) and (not x > 110): ...
```

A circuit for parity checking

Boolean expressions and circuits

A Boolean expression that checks parity

 3-bit odd parity checker F: an expression that should be true when the count of 1 bits is odd: when 1 or 3 of the bits are 1s.

$$P = (\neg A \land \neg B \land C) \lor (\neg A \land B \land \neg C) \lor (A \land \neg B \land \neg C) \lor (A \land B \land C)$$

Α	В	С	Р
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

There are specific methods for obtaining canonical Boolean expressions from a truth table, such as writing it as a disjunction of conjunctions or as a conjunction of disjunctions. See the bonus slide at the end.

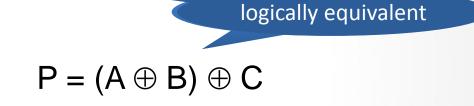
Note we have four subexpressions above each of them corresponding to exactly one row of the truth table where P is 1.

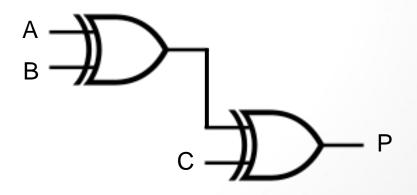
The circuit

3-bit odd parity checker

$$P = (\neg A \land \neg B \land C) \lor (\neg A \land B \land \neg C) \lor (A \land \neg B \land \neg C) \lor (A \land B \land C)$$

Α	В	С	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1





Summary

You should be able to:

- Identify basic gates
- Describe the behavior of a gate or circuit using Boolean expressions, truth tables, and logic diagrams
- Transform one Boolean expression into another given the laws of Boolean algebra

Using Minterms to Construct a Boolean Function from a Truth Table

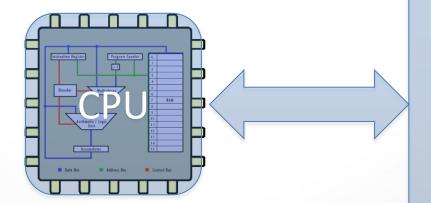
As presented by Alvarado et. al. in CS for All:

- 1. Write down the truth table for the Boolean function that you are considering
- 2. Delete all the rows from the truth table where the value of the function is 0
- 3. For each remaining row create a "minterm" as follows:
 - a. For each variable that has a 1 in that row write the name of the variable. If the input variable is 0 in that row, write the variable with a negation symbol.
 - b. Take their conjunction (AND them together)
- 4. Combine all of the minterms using OR (take their disjunction)

Next Time

How circuits are combined to form a computer

- Von Neumann architecture revisited
- Fetch Decode Execute Cycle



MEMORY