

Overview

- Human sensory systems and digital representations
- Digitizing images
- Digitizing sounds
- Video

Carnegie Mellon University

HUMAN SENSORY SYSTEMS

15110 Principles of Computin

Human limitations

- Range
 - only certain pitches and loudnesses can be heard
 - only certain kinds of light are visible, and there must be enough / not too much light
- Discrimination
 - pitches, loudnesses, colors, intensities can't be distinguished unless they are different enough
- Coding
 - nervous systems "encode" experience, e.g. rods and cones in the eye

15110 Principles of Computing,

-

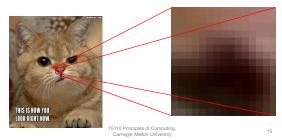
15110 Principles of Computing, Carnegie Mellon University

Encoding Images:

Vector vs. Raster / Bit-map

- There are two major ways to store images:
 - Vector graphics:

 a series of lines or curves. Expensive to compute but smoothly rescales.


image source: ian umces ed

15110 Principles of Computing

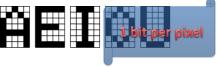
"Raw" bit-mapped images	
Array of pixels	
– one pixel = three numbers (RGB)	
 What other information do we need to display the image? 	
– look at TIFF file	
 image is just a bunch of numbers 	
 we need to know how wide/high it is to make sense of it 	
15110 Principles of Computing, Carnegie Mellon University 10	
Common Standards	
Vector: SVG, EPS, AI, CDR.	
- Special-purpose: commonly used for high-quality	
illustrations, graphics, etc.	
 Raster: JPEG (compression), GIF (compression, transparency), PNG (web portability), TIFF 	
(printing, huge), BMP (huge)	
 Commonly used for photos and pretty much everything 	
15110 Principles of Computing, Carnegle Mellon University 13	
a closer look at	
BIT MAPPED IMAGES	
15110 Principles of Computing,	

Pixels

 A bit-mapped image is stored in a computer as a sequence of *pixels*, picture elements.

Resolution

- The resolution of an image is the number of pixels used to represent the image (e.g. 1024 X 768).
- Each pixel represents the average color in that region.
- The more pixels per area, the higher the resolution, and the more accurate the image will appear.



15110 Principles of Computing,

16

Storing Bitmap Images

- In bitmapped images, each pixel is represented in computer memory in binary, just like other data types.
- If pixels of an image are black or white only, then
 we only need 1 bit per pixel to store the image,
 e.g. 00100 might be top row of "A".

Grayscale Images

- Grayscale images contain pixels that are various shades of gray, from black (maximum gray) to white (minimum gray).
- If there are 256 levels of gray for pixels, we can represent each pixel using 8 bits.

 1111111 = white
 ... (shades of gray)
 00000000 = black

256-color images (8-bit color)

RGB color systems

RGB-color images (24-bit color)

- Colors are represented as mixtures of red (R), green (G), and blue (B).
- Each pixel is represented using three 8-bit values, one for each color component.
- This representation allows for 2²⁴ = 16,777,216 different colors.
- This representation is also called "true color".
- Explore with DigitalColor Meter

(image from Wikipedia)

15110 Principles of Computing,

24

RGB example ⊖ ○ ○ Colors RGB Sliders Red Green Hue: 160 Sat: 0 Green: 0 Lum: 0 Blue: 0 RED **GREEN BLUE** 236 dec: 51 130 bi n: 00110011 11101100 10000010 8 hex: 3 Е С 2

15110 Principles of Computing, Carnegie Mellon University

Comparing Representations

 For a 640 X 480 image (307,200 pixels), how many bytes needed?

- B&W 38,400 bytes (307200/8)

8-bit grayscale 307,200 bytes
 256-color (8-bit color) 307,200 bytes

24-bit color
 921,600 byte(307200*24/8)

A single RGB image of size 1600 X 1200 requires over 5.76 million bytes!

so we need compression

15110 Principles of Computing, Carnegie Mellon University

Compressing Raster Data

- Run-length encoding (lossless, limited)
- Color maps (GIF, good for graphics with solid areas of color)
- JPEG (lossy a suite of techniques exploiting human visual perception)

15110 Principles of Computing,

24

RLE compression

- Run-Length Encoding is a <u>lossless</u> compression technique used in early image files.
- Instead of storing the 8-bit value for every pixel,

we store an 8-bit value along with how many of these occur in a row (run).

This saves a lot when there are large runs of the same color.

Color, Run, Color, Run, ...

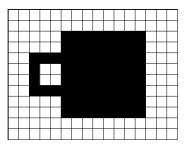
255,1,0,3,255,1

255,4,0,1

255,1,0,4

0,1,255,3,0,1

0,1,255,3,0,1


255,1,0,4

(Colors: 0=Black, 255=White)

Carnegie Mellon University

25

RLE Comparison

Bitmap 2 bytes 16 bytes 16 bytes 2 bytes 6 bytes 16 bytes 6 bytes 16 bytes 6 bytes 16 bytes 10 bytes 16 bytes 10 bytes 16 bytes 6 bytes 16 bytes 6 bytes 16 bytes 6 bytes 16 bytes 2 bytes 16 bytes 2 bytes 16 bytes 64 bytes 192 bytes

15110 Principles of Computing Carnegie Mellon University 2

GIF: Graphic Interchange Format

- 8-bit pixels, mapping to a table of 256 24-bit RGB colors.
- A codebook stores recurring sequences.
- Useful for representing images with fewer colors or large areas of color like company logos.

15110 Principles of Computing

GIF and photos

Only 256 colors leads to strange effects

Carnegie Mellon University

JPEG (JPG): Joint Photographic Experts Group

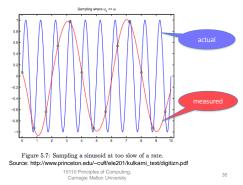
- A <u>lossy</u> compression technique for photographic images.
 - Perceptual Coding: based on what we can/cannot see.
- JPEG demonstration

Medium quality Compression 23:1

Lowest quality Compression 144:1

15110 Principles of Computing, Carnegie Mellon University

digitizing **SOUND** Sound is a pressure wave When an instrument is played or a voice speaks, periodic (many times per second) changes occur in air pressure, which we interpret as sound. Sampling


• Pressure varies continuously–sampling measures how much

Sampling rate: how many times per second do we measure?
 Sample size: how many bits do we store per sample?

pressure at fixed intervals
Accuracy determined by
Sampling rate
Sample size

When sampling is too slow

Samples must have enough bits

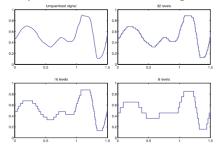


Figure 5.11: Quantized versions of an analog signal.

Source: http://www.princeton.edu/~cutf/ele201/kulkami_text/digitizn.pdf
15110 Principles of Computing,
Camerie Mellon Libriversity

	High-quality sampling	
- Drive	Sampin	
 Rate: 44,100 samples per second (Hertz – Hz). – sampling theorem: the sampling rate must be at least twice the highest frequency in the sound (humans can hear up to approx. 20,000 Hz.) 		
upp.	sample s	size
	e size: 16-bits per sample (so there are cude levels that can be measured).	65,536
	entization (rounding to integer sample values)	introduces
nois	e. Adding one bit cuts the noise in half.	
	15110 Principles of Computing, Carnegie Mellon University	38
	ND FILE FORMATS	
SOUI	ND FILE FORMATS	
	15110 Principles of Computing, Camegie Mellon University	39
	Camegie Meilon University	
	Compressing Sound Eiles	
	Compressing Sound Files	
	es (compression/decompression)	
	ment various ression/decompression technique	ıc.
	ression/decompression technique ess: WMA Lossless, ALAC, MPEG-4	
	: MPEG, like JPEG, a family of	, 123,
	ptually-based techniques	
	15110 Principles of Computing, Camerie Mellon University	40

MP3	
MP3 (MPEG3) is a <u>lossy</u> compression technique.	
Takes advantage of human perception (psychoacoustics)	
 Our hearing is better in mid range frequencies than 	
on the low and high ends. — If a loud and soft sound play at about the same time	
or about the same frequencies, we can't hear the soft	
sound: this is called <i>masking</i> – Masking can hide noise introduced by compression.	
CONTRACTOR OF CONTRACTOR	
1910 intropies of Computing, 41 Carnegie Melton University 41	
MP3 Demo	
Let Me Call You Sweetheart	
http://www-	
mtl.mit.edu/Courses/6.050/2014/notes/mp3.html	
15110 Principles of Computing, Camegie Melton University 42	
Connegle meant University	
MP2 Compression	
MP3 Compression	
Like JPEG, MP3 has various levels of compression:	
Bit Rate Compression Ratio Quality	
256Kbps 5:1 Supreme (near best) 192Kbps 7:1 Excellent (better)	
128Kbps 11:1 (good)	
96Kbps 19:1 (fair)	
64Kbps 22:1 FM quality (poor)	
MP3 also has Variable Bit Rate (VBR) since compression ability	
can vary at different segments of the digital recording.	
15110 Principles of Computing, Camegie Melton University 43	

IMAGE + SOUND = VIDEO Problem: a torrent of data Imagine if we used "raw" images and sound for video - about 5MB of image data per frame, times 30 frames/sec = about 150 MB image data per second - about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 MP4 MP4 (MPEG4): compression technique for video - Sophisticated engineering exploits - redundancy (nex frame is likely to resemble this frame) - perception (what the eye and ear can do) - Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
Problem: a torrent of data Imagine if we used "raw" images and sound for video about 5MB of image data per frame, times 30 frames/sec = about 150 MB image data per second about 1400 kbps, or 175 KB sound data per second 10 minutes of this: about 90.1 Gigabytes IMP4 MP4 MP4 MP4 MP4 MP4 MP6 MP4 MP4		
Problem: a torrent of data Imagine if we used "raw" images and sound for video about 5MB of image data per frame, times 30 frames/sec = about 150 MB image data per second about 1400 kbps, or 175 KB sound data per second 10 minutes of this: about 90.1 Gigabytes IMP4 MP4 MP4 MP4 MP4 MP4 MP6 MP4 MP4		
Problem: a torrent of data Imagine if we used "raw" images and sound for video about 5MB of image data per frame, times 30 frames/sec = about 150 MB image data per second about 1400 kbps, or 175 KB sound data per second 10 minutes of this: about 90.1 Gigabytes IMP4 MP4 MP4 MP4 MP4 MP4 MP6 MP4 MP4		
Problem: a torrent of data Imagine if we used "raw" images and sound for video about 5MB of image data per frame, times 30 frames/sec = about 150 MB image data per second about 1400 kbps, or 175 KB sound data per second 10 minutes of this: about 90.1 Gigabytes IMP4 MP4 MP4 MP4 MP4 MP4 MP6 MP4 MP4		
Problem: a torrent of data Imagine if we used "raw" images and sound for video about 5MB of image data per frame, times 30 frames/sec = about 150 MB image data per second about 1400 kbps, or 175 KB sound data per second 10 minutes of this: about 90.1 Gigabytes IMP4 MP4 MP4 MP4 MP4 MP4 MP6 MP4 MP4		
Problem: a torrent of data Imagine if we used "raw" images and sound for video about 5MB of image data per frame, times 30 frames/sec = about 150 MB image data per second about 1400 kbps, or 175 KB sound data per second 10 minutes of this: about 90.1 Gigabytes IMP4 MP4 MP4 MP4 MP4 MP4 MP6 MP4 MP4		
Problem: a torrent of data Imagine if we used "raw" images and sound for video about 5MB of image data per frame, times 30 frames/sec = about 150 MB image data per second about 1400 kbps, or 175 KB sound data per second 10 minutes of this: about 90.1 Gigabytes IMP4 MP4 MP4 MP4 MP4 MP4 MP6 MP4 MP4	IMAGE + SOUND = VIDEO	
Problem: a torrent of data Imagine if we used "raw" images and sound for video - about 5MB of image data per frame, times 30 frames/sec = about 150 MB image data per second - about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 MP4 MP4 (MPEG4): Compression technique for video Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
Problem: a torrent of data Imagine if we used "raw" images and sound for video - about 5MB of image data per frame, times 30 frames/sec = about 150 MB image data per second - about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 MP4 MP4 (MPEG4): Compression technique for video Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
Problem: a torrent of data Imagine if we used "raw" images and sound for video about SMB of image data per frame, times 30 frames/sec = about 150 MB image data per second about 1400 kbps, or 175 KB sound data per second 10 minutes of this: about 90.1 Gigabytes MP4 MP4 (MPEG4): compression technique for video Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones	15110 Principles of Computing, Camerie Mellon University 44	
Imagine if we used "raw" images and sound for video - about 5MB of image data per frame, times 30 frames/sec - about 150 MB image data per second - about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 • MP4 (MPEG4):	Gainegle webbi University	
Imagine if we used "raw" images and sound for video - about 5MB of image data per frame, times 30 frames/sec - about 150 MB image data per second - about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 • MP4 (MPEG4):		
Imagine if we used "raw" images and sound for video - about 5MB of image data per frame, times 30 frames/sec - about 150 MB image data per second - about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 • MP4 (MPEG4):		
Imagine if we used "raw" images and sound for video - about 5MB of image data per frame, times 30 frames/sec - about 150 MB image data per second - about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 • MP4 (MPEG4):		
Imagine if we used "raw" images and sound for video - about 5MB of image data per frame, times 30 frames/sec - about 150 MB image data per second - about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 • MP4 (MPEG4):		
Imagine if we used "raw" images and sound for video - about 5MB of image data per frame, times 30 frames/sec - about 150 MB image data per second - about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 • MP4 (MPEG4):	Problem: a torrent of data	
for video - about SMB of image data per frame, times 30 frames/sec = about 150 MB image data per second - about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 • MP4 (MPEG4):		
- about 5MB of image data per frame, times 30 frames/sec = about 150 MB image data per second - about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 • MP4 (MPEG4): compression technique for video • Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) • Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones	 Imagine if we used "raw" images and sound 	
frames/sec = about 150 MB image data per second - about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 • MP4 (MPEG4): compression technique for video • Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) • Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones	for video	
second - about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 • MP4 (MPEG4):		
- about 1400 kbps, or 175 KB sound data per second - 10 minutes of this: about 90.1 Gigabytes MP4 • MP4 (MPEG4): compression technique for video • Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) • Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
MP4 MP4 (MPEG4): compression technique for video Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
MP4 MP4 (MPEG4): compression technique for video Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
• MP4 (MPEG4):	 10 minutes of this: about 90.1 Gigabytes 	
• MP4 (MPEG4):		
MP4 (MPEG4): compression technique for video • Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) • Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones	15110 Principles of Computing, Camenie Mellon University 45	
MP4 (MPEG4): compression technique for video Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones	g,	-
MP4 (MPEG4): compression technique for video Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
MP4 (MPEG4): compression technique for video Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
MP4 (MPEG4): compression technique for video Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
MP4 (MPEG4): compression technique for video Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
compression technique for video • Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) • Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones	MP4	
compression technique for video • Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) • Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
Sophisticated engineering exploits - redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
- redundancy (next frame is likely to resemble this frame) - perception (what the eye and ear can do) • Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
frame) - perception (what the eye and ear can do) • Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones		
Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones 15110 Principles of Computing.		
Digital Cinema, cameras (e.g. GoPro), phones	perception (what the eye and ear can do)	
15110 Principles of Computing,		
15110 Principles of Computing, Camegie Mellon University 48	Digital Cinema, cameras (e.g. GoPro), phones	
	15110 Principles of Computing, Carnegie Mellon University 46	

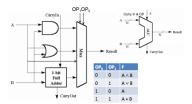
YouTube, Vimeo, etc.

- YouTube, Vimeo, etc. support many formats, including MP4, AVI (Microsoft), QuickTime (Apple), and Flash (Adobe).
- You can download videos from these sites in your preferred format using tools such as KeepVid
- Uploading and then downloading a video may reduce the quality due to lossy compression.

15110 Principles of Computing

47

Summary


- Samples
 - Pixels are samples of the image in space; resolution and number of bits determine quality
 - Audio samples measure the signal in time; sampling rate and number of bits determine quality
- Tradeoff between quality and size
- Compression methods exploit
 - Coding redundancy (e.g. Huffman codes)
 - Data redundancy (e.g. run-length coding)
 - Perceptual redundancy (e.g. MP3, JPEG)

15110 Principles of Computing

.

Next Time

Computer Organization

15110 Principles of Computing Carnegie Mellon University