

UNIT 6B Data Representation: Exploiting Redundancy

Last Lecture

Encoding unsigned and signed integers

Encoding Characters as Integers, Ascii Table

This lecture

- Parity: injecting redundancy for error detection
- Redundancy in information
- Data compression
- Removing redundancy for data compression
 - Huffman codes

error correction using

PARITY BITS

Noisy Communication Channels

 Suppose we're sending ASCII characters over the network

Network communications may erroneously alter bits of a message

Simple error detection method: the parity bit

Parity

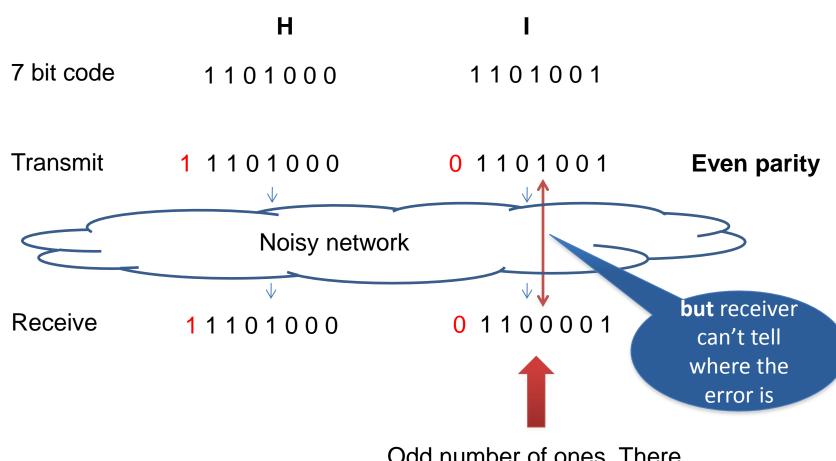
Idea: for each character (sequence of 7 bits),
 count the number of bits that are 1

- Sender and receiver agree to use even parity or odd parity; sender sends extra leftmost bit
 - Even parity: Set the leftmost bit so that the number of 1's in the byte is even.
 - Odd parity: Set the leftmost bit so that the number of 1's in the byte is odd.

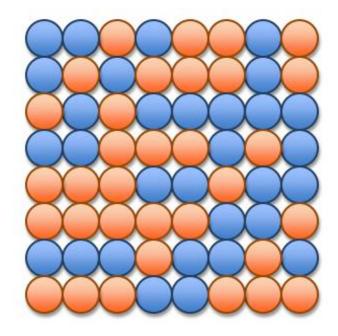
Parity Example

- "M" is transmitted using even parity.
- "M" in ASCII is 77₁₀, or 100 1101 in binary
 - four of these bits are 1
- Transmit 0 100 1101 to make the number of 1-bits even.
- Receiver counts the number of 1-bits in character received
 - if odd, something went wrong, request retransmission
 - if even, proceed normally
 - Two bits could have been flipped, giving the illusion of correctness. But the probability of 2 or more bits in error is low.

Parity Example



Odd number of ones. There must be an error in transmission



- Seven characters are transmitted here as bytes using even parity along with a special 8th byte.
- The two colors represent 1's and 0's.
- One bit is in error. Can you find it?

Parity and redundancy

 An ASCII character with a correct parity bit contains redundant information

...because the parity bit is *predictable* from the other bits

This idea leads into the basics of information theory

a powerful tool

REDUNDANT INFORMATION

Information Content

- We measure information content in bits
 - This is related to the fact that we can represent 2^k different things with k bits.
 - Turn the idea around and if we want to represent
 M different things, we need log₂ M bits
- But this is only true if the M things all have the same probability

Probability and information content

When you get an item of information, how surprised are you? For example, your phone tells you that you have a text. Who from?

- your best friend: you're not surprised; this event has high probability
- Barack Obama: you're surprised; this event has low probability

Probability and information content

- Low probability events have high information content; when you learn of them you get a lot of new information
 - Barack Obama knows my phone number!!!!
- High probability events have low information content.
 - The sun rose in the east this morning. meh
- Notice that a character with correct parity is much more probable than one with incorrect parity

squeezing out redundancy

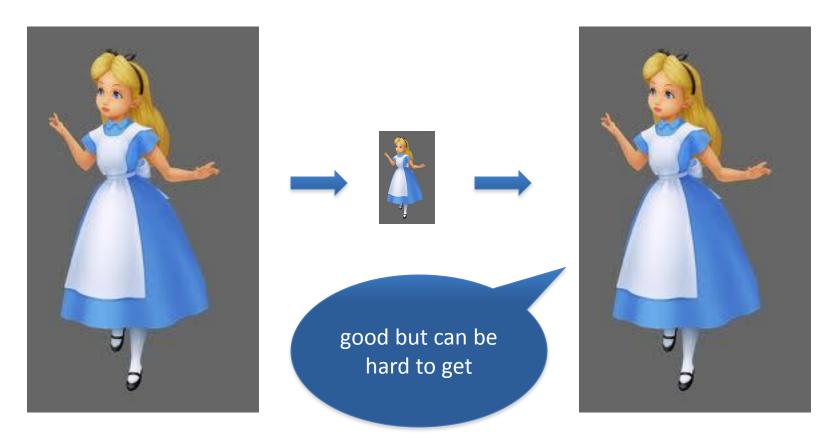
DATA COMPRESSION

Data Compression: Why?

- Faster transmission
 - e.g. digital video impossible without compression
- Cheaper storage
 - e.g. OS X Mavericks compresses data in memory until it needs to be used

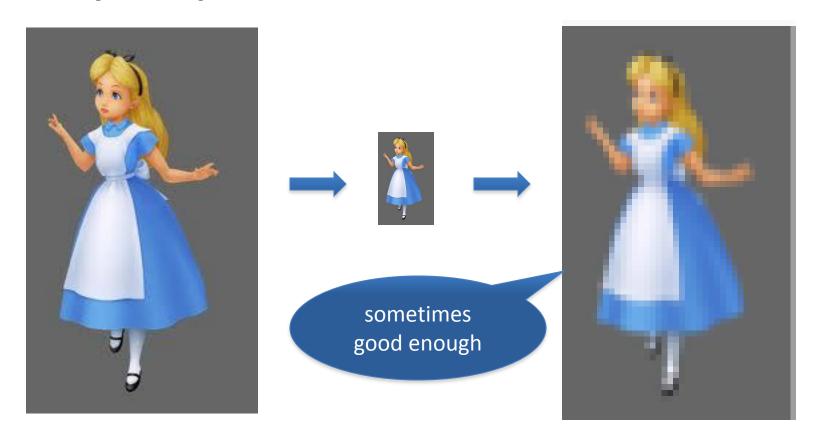
Data Compression: choices

Lossless compression



Data Compression: choices

Lossy compression



Today: lossless text compression

Compression:

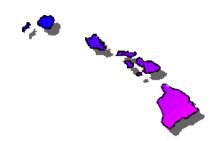
- Input: fixed-width character codes (e.g. 7-bit ASCII codes)
- Output: Huffman codes (variable number of bits per character)
- Decompression:
 - Huffman codes to fixed-length codes
- Idea: squeeze out redundancy indicated by character probabilities

ASCII: Fixed-Width Encoding

- Remember: each character is given a binary code with 7 bits.
- This gives us 2⁷ = 128 different codes for characters.
- Can we make do with fewer bits? Suppose our text is entirely in Hawaiian...

The Hawaiian Alphabet

- The Hawaiian alphabet consists of 13 characters.
 - ' is the okina which sometimes occurs between vowels (e.g. KAMA' AINA)



Α E H Ι K T. M N P IJ W

Specialized fixed-width encodings

- Suppose our text file is entirely in Hawaiian
- How many bits do we need for our 13 characters?
 - Are 3 bits enough? 000, 001, ..., 111?
 - Are 4 bits enough? 0000, 0001, ..., 1111?
 - In general, for k equally probable characters we need $\lceil \log_2 k \rceil$ bits
- So for Hawaiian we need $\lceil \log_2 13 \rceil = 4$ bits

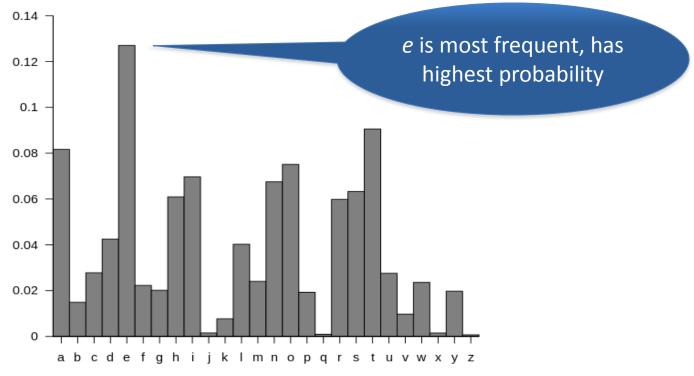
Cost of Fixed-Width Encoding

- With a fixed-width encoding scheme of *n* bits and a file with *m* characters, need *mn* bits to store the entire file.
 - Example: to store 1000 characters of Hawaiian we would need
 4000 bits
- Can we do better? Idea: some characters are used much more often than others.
 - If we assign fewer bits to more frequent characters, and more bits to less frequent characters, then the overall length of the message might be shorter.

Use a method known as Huffman encoding named after David Huffman

Frequency counts as probabilities

• **Example:** counting the relative frequency of letters in a large corpus of English text



Hawaiian Alphabet Frequencies

- The table to the right shows each character along with its relative frequency in Hawaiian words.
- Smaller numbers mean less common characters
- Frequencies add up to 1.00 and can be viewed as probabilities

-	_	0.00
,	0.	068
	•	

A	0.	262

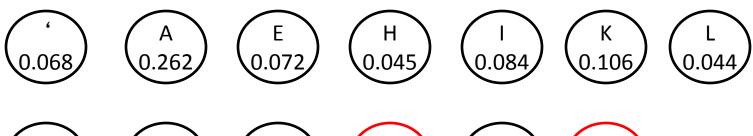
E	0.	072

$$W = 0.009$$

Huffman Coding: the process

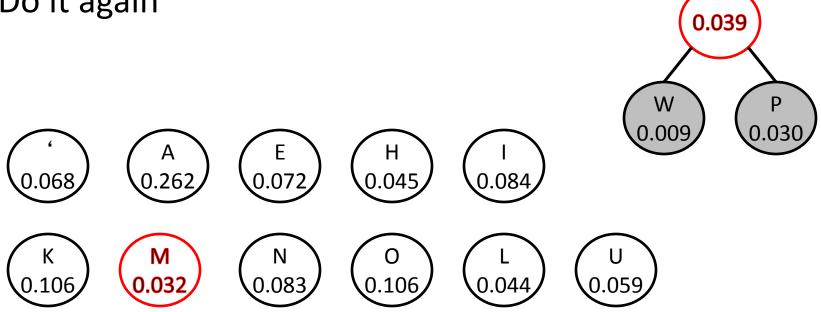
- 1. Assign character codes
 - a. Obtain character frequencies
 - b. Use frequencies to build a Huffman tree
 - c. Use tree to assign variable-length codes to characters (store them in a table)
- 2. Use table to encode (compress) ASCII source file to variable-length codes
- 3. Use tree to decode (decompress) to ASCII

- We use a tree structure to develop the unique binary code for each letter.
- Start with each letter/frequency as its own singlenode tree
- Find the two lowest-frequency trees

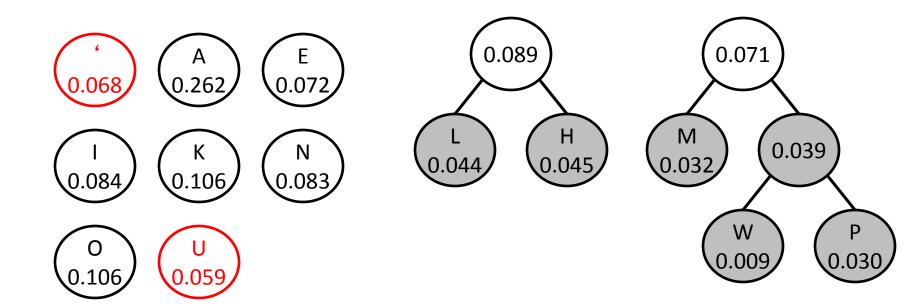


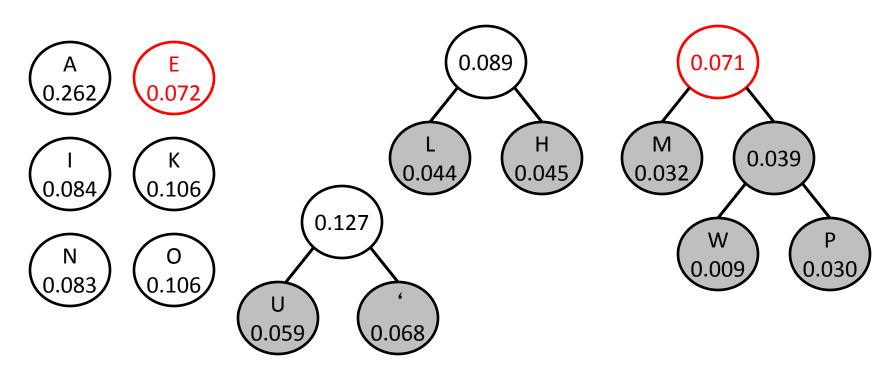
(0.106) (0.030)

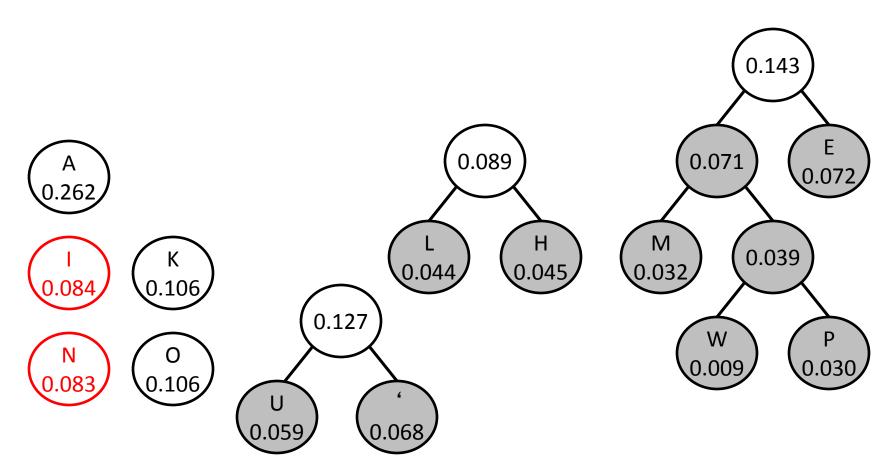
 Combine two lowest-frequency trees into a tree with a new root with the sum of their frequencies.

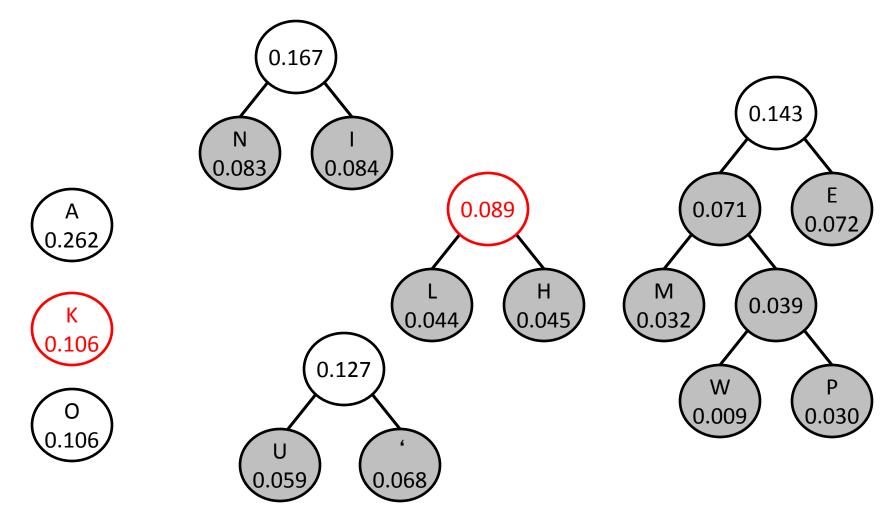


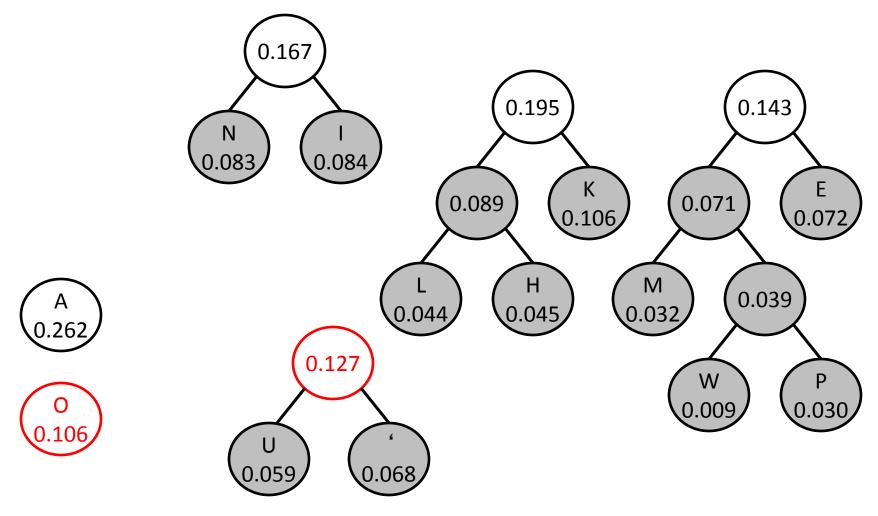
...and again, as many times as possible

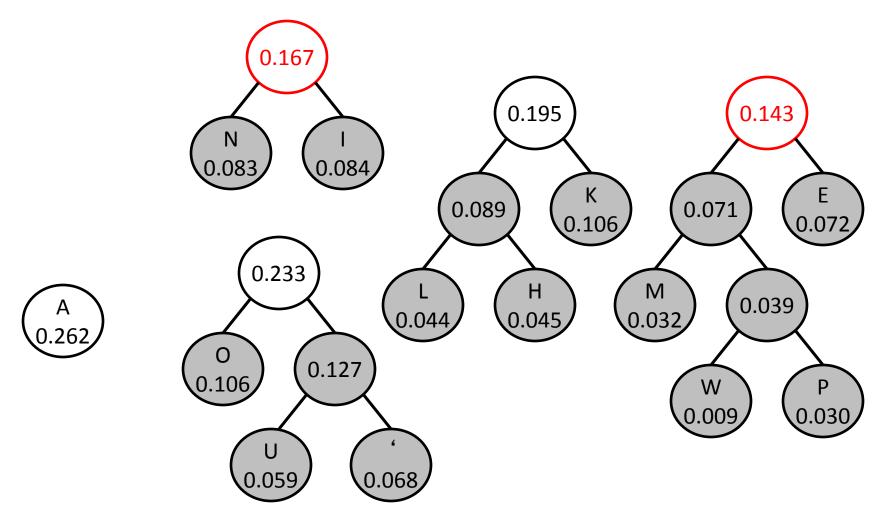


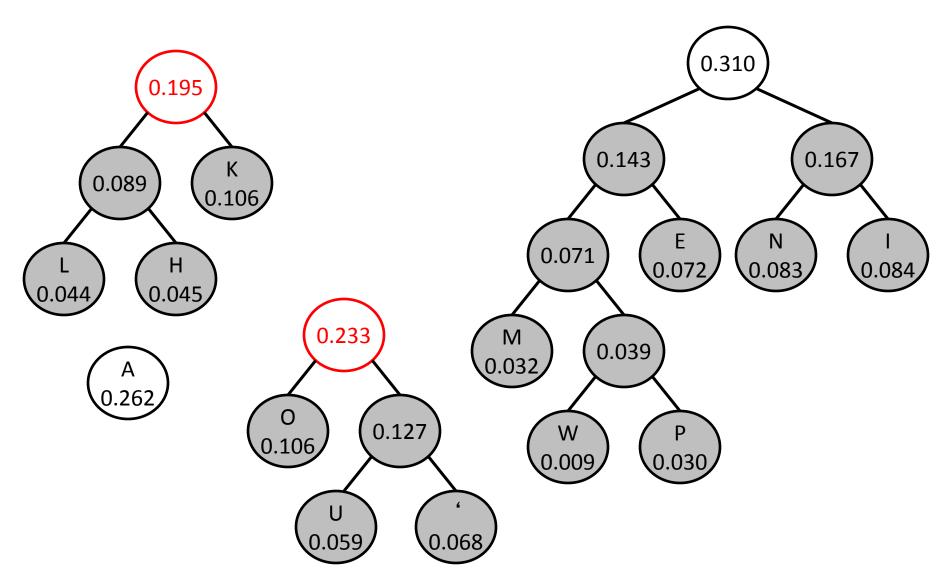




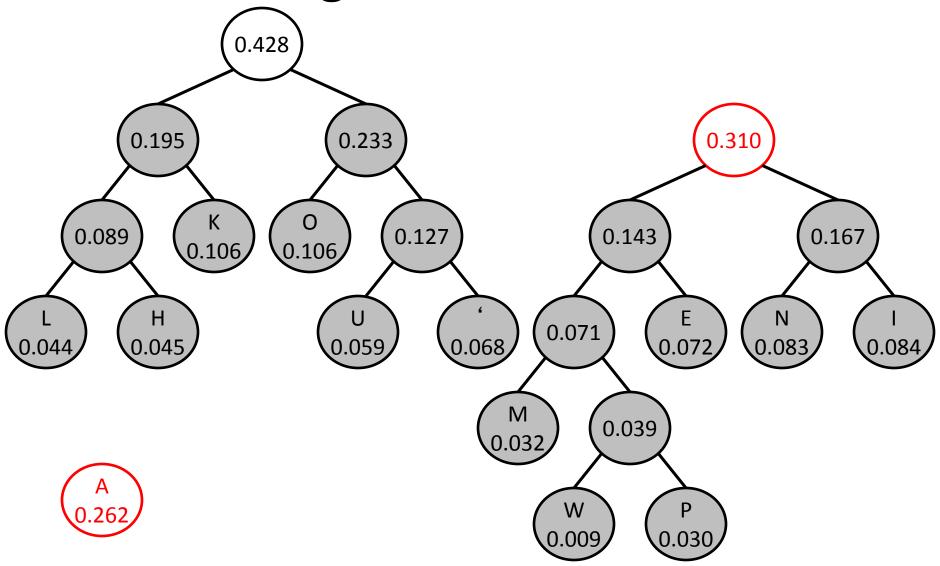




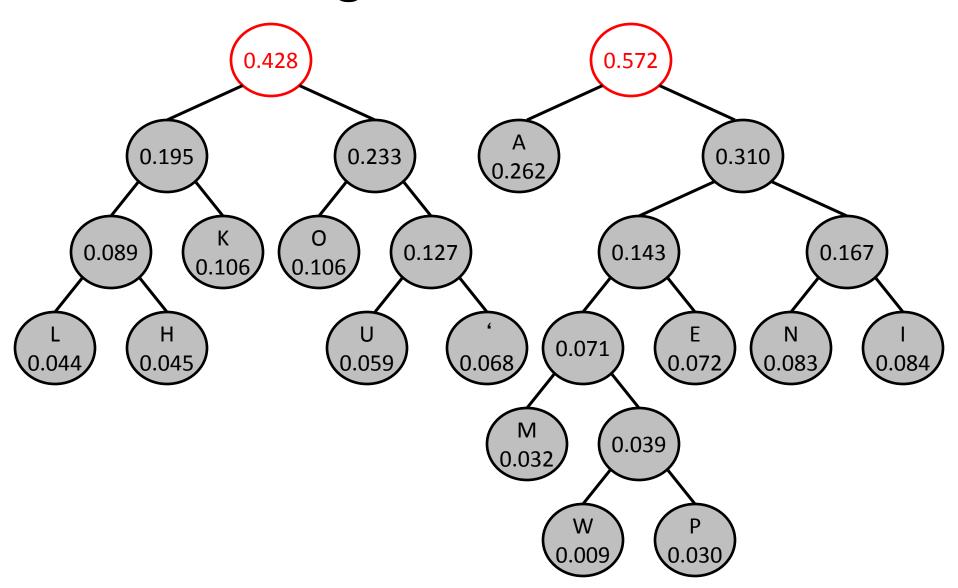


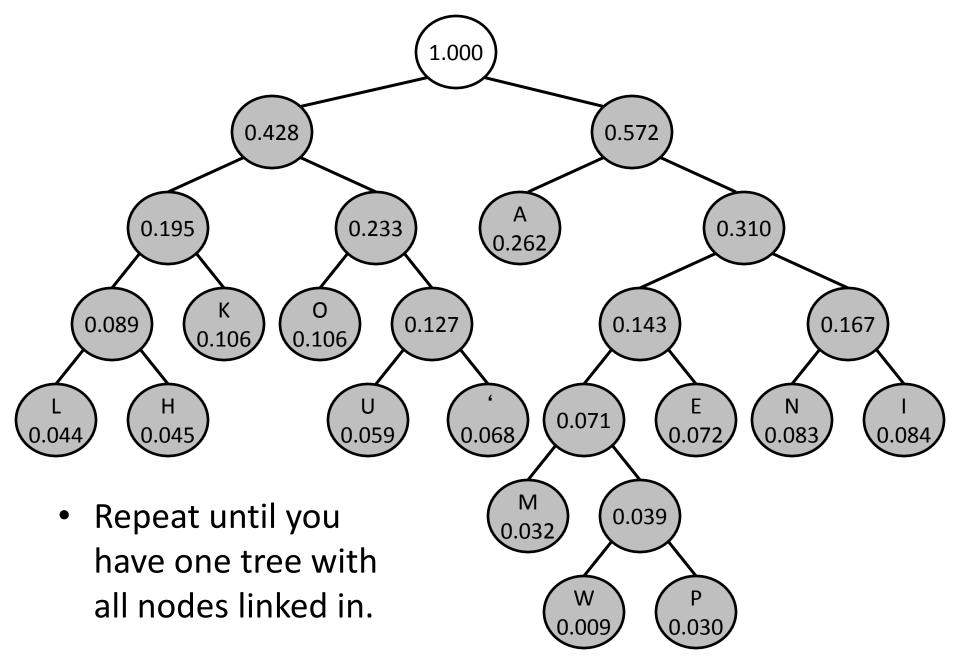


Building The Huffman Tree



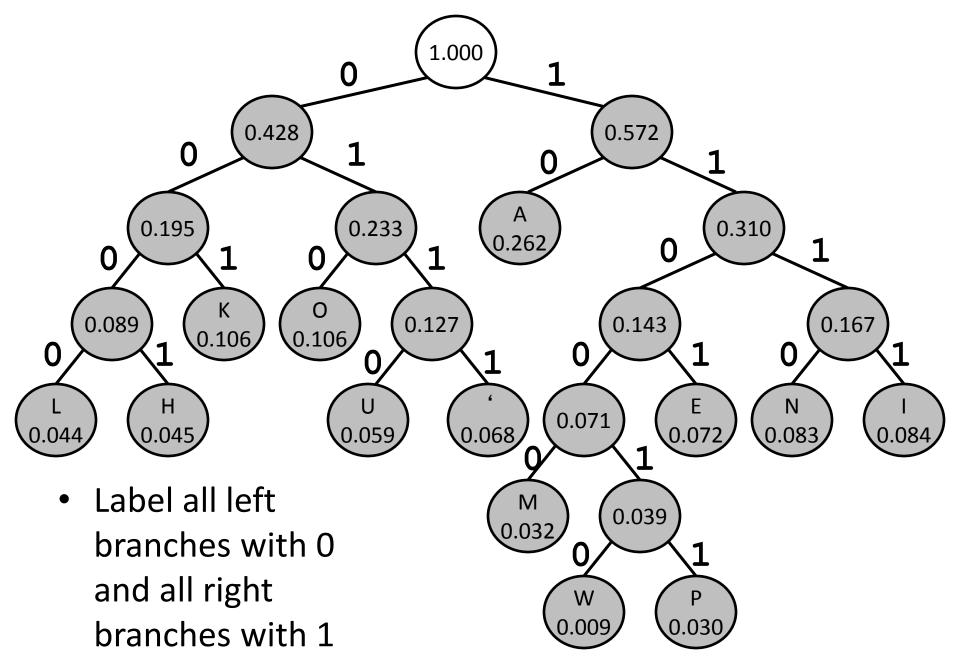
Building The Huffman Tree

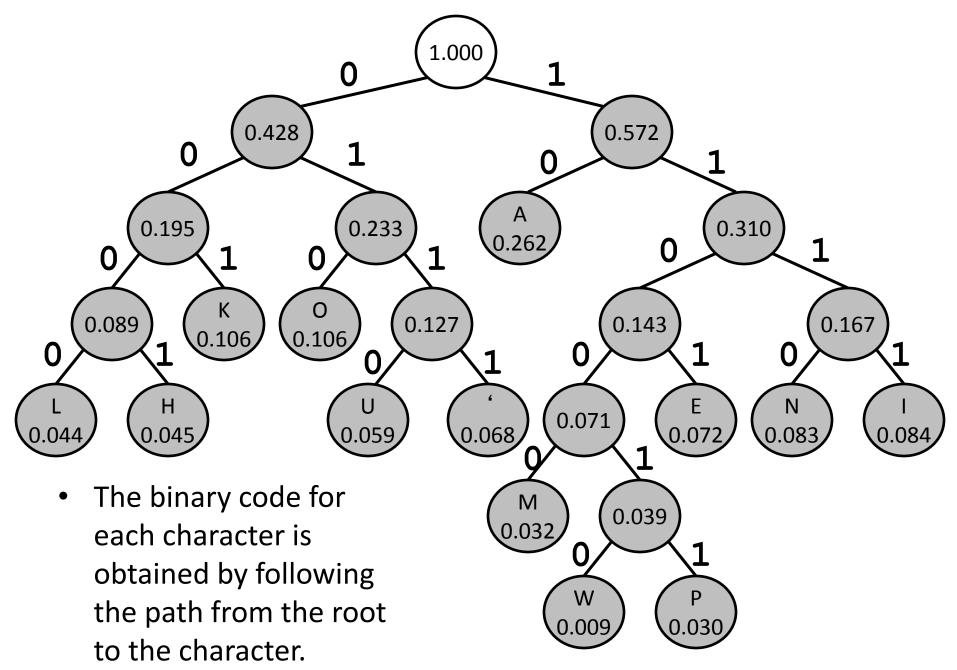


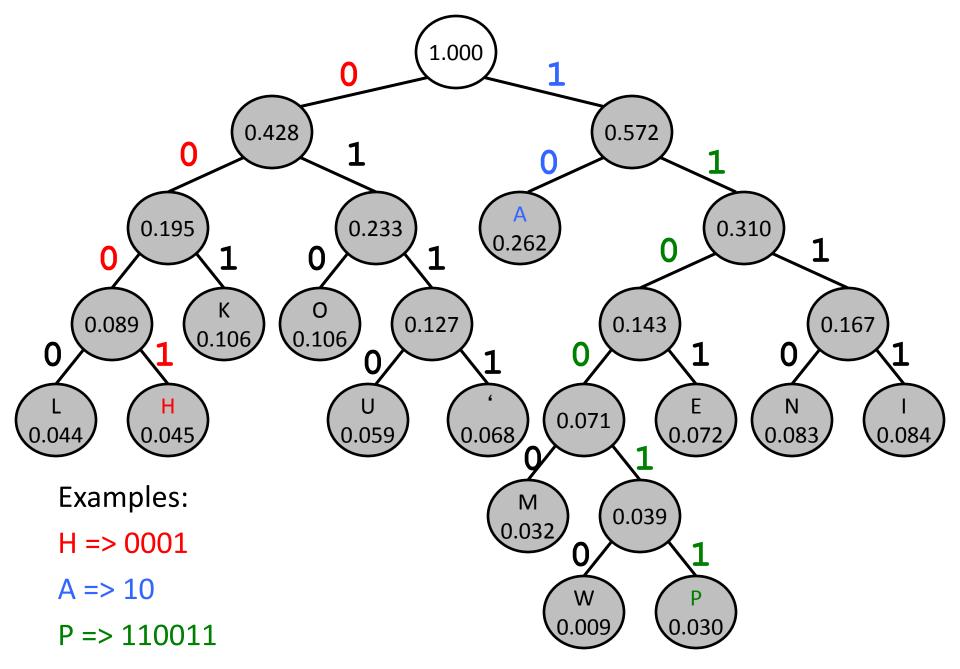


Using the Tree to Assign Codes

 The path from the root to each character determines the code







Fixed Width vs. Huffman Coding

•	0000	•	0111	
A	0001	A	10	ALOHA
E	0010	E	1101	
H	0011	H	0001	
I	0100	I	1111	Fixed Width: 0001 0110 1001 0001 20 bits
K	0101	K	001	
L	0110	L	0000	
M	0111	M	11000	
N	1000	N	1110	
0	1001	0	010	Huffman Code:
P	1010	P	110011	10 0000 010 0001 10
U	1011	U	0110	15 bits
W	1100	W	110010	

How about...

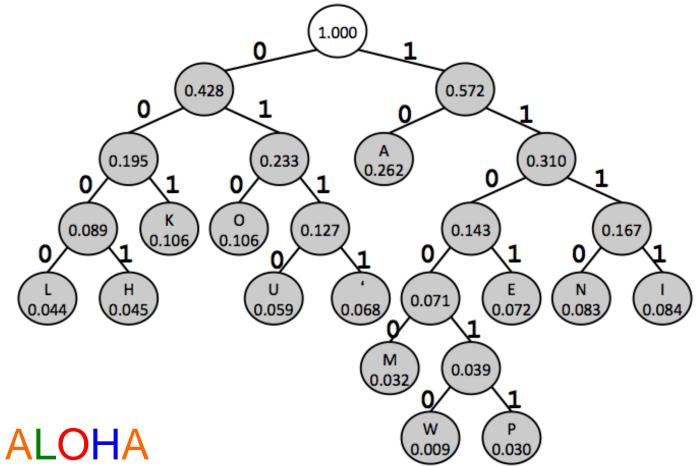
- humuhumunukunukuapua'a (22 chars) (the reef triggerfish)
- \bullet 4454445444344434264242 = 84
- vs 22*4 = 88

Decoding

- In a fixed-width code, the boundaries between letters are fixed in advance: 0001 0110 1001 0011 0001
- With Huffman codes, the boundaries are determined by the letters themselves.
 - No letter's code can be a prefix of another letter.
 - Example: since A is "10", no other letter's code can begin with "10". All the remaining codes begin with "00", "01", or "11".

Decoding

100000010000110



• To find the character use the bits to determine path from root

Next

Representing images and sound

