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UNIT 6B 
Data Representation: 

Exploiting Redundancy 
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Last Lecture 

• Encoding unsigned and signed integers 

 

• Encoding Characters as Integers, Ascii Table 
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This lecture 

• Parity: injecting redundancy for error 
detection 

• Redundancy in information 

• Data compression 

• Removing redundancy for data compression 

– Huffman codes 
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PARITY BITS 
error correction using  
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Noisy Communication Channels 

• Suppose we’re sending ASCII characters over 
the network 

 

• Network communications may erroneously 
alter bits of a message 

 

• Simple error detection method: the parity bit 
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Parity 

• Idea: for each character (sequence of 7 bits), 
count the number of bits that are 1 

 

• Sender and receiver agree to use even parity 
or odd parity; sender sends extra leftmost bit 

– Even parity: Set the leftmost bit so that the 
number of 1’s in the byte is even. 

– Odd parity: Set the leftmost bit so that the 
number of 1’s in the byte is odd. 
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Parity Example 

• “M” is transmitted using even parity. 

• “M” in ASCII is 7710, or  100 1101 in binary 

– four of these bits are 1 

• Transmit 0 100 1101 to make the number of 1-bits even. 

• Receiver counts the number of 1-bits in character received 

– if odd, something went wrong, request retransmission 

– if even, proceed normally 

– Two bits could have been flipped, giving the illusion of 
correctness.  But the probability of 2 or more bits in error 
is low. 
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Parity  Example 
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7 bit code 1 1 0 1 0 0 0 1 1 0 1 0 0 1 

Transmit 1  1 1 0 1 0 0 0 0  1 1 0 1 0 0 1 Even parity 

Receive 1 1 1 0 1 0 0 0 0  1 1 0 0 0 0 1 

Odd number of ones. There 

must be an error in transmission 

H I 

Noisy network 

15110 Principles of Computing, Carnegie 

Mellon University 

but receiver 
can’t tell 

where the 
error is 

• Seven characters are transmitted here as bytes 

using even parity along with a special 8th byte. 

• The two colors represent 1’s and 0’s. 

• One bit is in error. Can you find it? 
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Parity and redundancy 

• An ASCII character with a correct parity bit 
contains redundant information 

 

• …because the parity bit is predictable from the 
other bits 

 

• This idea leads into the basics of information 
theory 
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REDUNDANT INFORMATION 
a powerful tool 
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Information Content 

• We measure information content in bits 

– This is related to the fact that we can represent 2k 
different things with k bits. 

– Turn the idea around and if we want to represent 
M different things, we need log2 M bits 

• But this is only true if the M things all have the same 
probability 
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Probability and information 
content 

When you get an item of information, how 
surprised are you? For example, your phone tells 
you that you have a text. Who from? 

 

•your best friend: you’re not surprised; this 
event has high probability 

•Barack Obama: you’re surprised; this event has 
low probability 
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Probability and information 
content 

• Low probability events have high information 
content; when you learn of them you get a lot of new 
information 

– Barack Obama knows my phone number!!!! 

• High probability events have low information 
content. 

– The sun rose in the east this morning. meh 

• Notice that a character with correct parity is much 
more probable than one with incorrect parity 
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DATA COMPRESSION 
squeezing out redundancy 
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Data Compression: Why? 

• Faster transmission 

– e.g. digital video impossible without compression 

• Cheaper storage 

– e.g. OS X Mavericks compresses data in memory 
until it needs to be used 
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Data Compression: choices 

• Lossless compression 
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good but can be 
hard to get 

Data Compression: choices 

• Lossy compression 
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Today: lossless text compression 

• Compression: 

– Input: fixed-width character codes (e.g. 7-bit ASCII 
codes) 

– Output: Huffman codes (variable number of bits 
per character) 

• Decompression: 

– Huffman codes to fixed-length codes 

• Idea: squeeze out redundancy indicated by 
character probabilities 
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ASCII: Fixed-Width Encoding 

• Remember: each character is given a binary 
code with 7 bits. 

• This gives us 27 = 128 different codes for 
characters. 

• Can we make do with fewer bits? Suppose 
our text is entirely in Hawaiian… 
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The Hawaiian Alphabet 

• The Hawaiian alphabet 
consists of 13 characters. 

– ′ is the okina which 
sometimes occurs between 
vowels (e.g. KAMA’AINA ) 
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Specialized fixed-width encodings 

• Suppose our text file is entirely in Hawaiian 

 

• How many bits do we need for our 13 characters? 

– Are 3 bits enough? 000, 001, …, 111? 

– Are 4 bits enough? 0000, 0001, …, 1111? 

• In general, for k equally probable characters we need 
 log2 k bits  

 

• So for Hawaiian we need log2 13 = 4 bits 
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Cost of Fixed-Width Encoding 

• With a fixed-width encoding scheme of n bits and a file 
with m characters, need mn bits to store the entire file. 

– Example: to store 1000 characters of Hawaiian we would need 
4000 bits 

• Can we do better? Idea: some characters are used much 
more often than others. 

– If we assign fewer bits to more frequent characters, and more 
bits to less frequent characters, then the overall length of the 
message might be shorter. 
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Use a method known as Huffman 
encoding named after David Huffman  

Frequency counts as probabilities 

• Example: counting the relative frequency of 
letters in a large corpus of English text 
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e is most frequent, has 
highest probability 
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Hawaiian Alphabet Frequencies 

• The table to the right 
shows each character along 
with its relative frequency 
in Hawaiian words. 

• Smaller numbers mean less 
common characters 

• Frequencies add up to 1.00 
and can be viewed as 
probabilities 
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′   0.068 

A  0.262 

E  0.072 

H  0.045 

I  0.084 

K  0.106 

L  0.044 

M  0.032 

N  0.083 

O  0.106 

P  0.030 

U  0.059 

W  0.009 

Huffman Coding: the process 

1. Assign character codes 

a. Obtain character frequencies 

b. Use frequencies to build a Huffman tree 

c. Use tree to assign variable-length codes to 
characters (store them in a table) 

2. Use table to encode (compress) ASCII source 
file to variable-length codes 

3. Use tree to decode (decompress) to ASCII 
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Building The Huffman Tree 

• We use a tree structure to develop the unique 
binary code for each letter. 

• Start with each letter/frequency as its own single-
node tree 

• Find the two lowest-frequency trees 
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E 
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I 
0.084 

K 
0.106 

M 
0.032 

N 
0.083 

O 
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U 
0.059 

L 
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Building The Huffman Tree 

• Combine two lowest-frequency trees into a tree 
with a new root with the sum of their frequencies. 

• Do it again 
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Building The Huffman Tree 

• …and again, as many times as possible 
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Building The Huffman Tree 
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Building The Huffman Tree 

15110 Principles of Computing, 

Carnegie Mellon University 
41 

‘ 
0.068 

A 
0.262 

E 
0.072 

H 
0.045 

I 
0.084 

K 
0.106 

M 
0.032 

N 
0.083 

O 
0.106 

P 
0.030 

U 
0.059 

W 
0.009 

L 
0.044 

0.039 

0.071 0.089 

0.127 

15110 Principles of Computing, 

Carnegie Mellon University 
42 

‘ 
0.068 

A 
0.262 

E 
0.072 

K 
0.106 

H 
0.045 

M 
0.032 

O 
0.106 

P 
0.030 

U 
0.059 

W 
0.009 

L 
0.044 

0.039 

0.071 

0.127 

0.143 

Building The Huffman Tree 

I 
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N 
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Building The Huffman Tree 
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Building The Huffman Tree 
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Building The Huffman Tree 
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Building The Huffman Tree 
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• Repeat until you 
have one tree with 
all nodes linked in. 
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Using the Tree to Assign Codes 

• The path from the root to each character 
determines the code 
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• Label all left 
branches with 0 
and all right 
branches with 1 

0 

0 

0 

0 
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• The binary code for 
each character is 
obtained by following 
the path from the root 
to the character. 
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Examples: 

H => 0001 

A => 10 

P => 110011 

0 

0 

0 

0 

0 0 
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Fixed Width vs. Huffman Coding 
′   0000 

A  0001 

E  0010 

H  0011 

I  0100 

K  0101 

L  0110 

M  0111 

N  1000 

O  1001 

P  1010 

U  1011 

W  1100 
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′   0111 

A  10 

E  1101 

H  0001 

I  1111 

K  001 

L  0000 

M  11000 

N  1110 

O  010 

P  110011 

U  0110 

W  110010 

 

ALOHA  

 

Fixed Width: 

0001 0110 1001 0011 0001 

20 bits 

 

Huffman Code: 

10 0000 010 0001 10 

15 bits 

How about… 

• humuhumunukunukuapua'a   (22 chars) 
(the reef triggerfish) 

• 4454445444344434264242 = 84 

• vs 22*4 = 88 
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Decoding 

• In a fixed-width code, the boundaries 
between letters are fixed in advance: 
 0001 0110 1001 0011 0001 

• With Huffman codes, the boundaries are 
determined by the letters themselves. 

– No  letter’s code can be a prefix of another letter. 

– Example: since A is “10”, no other letter’s code 
can begin with “10”. All the remaining codes 
begin with “00”, “01”, or “11”. 

15110 Principles of Computing, 

Carnegie Mellon University 
57 

Decoding 
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• To find the character use the bits to determine path from root 

100000010000110 

ALOHA 

Next 

• Representing images and sound 
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