UNIT 6B
Data Representation: Exploiting Redundancy

Last Lecture

- Encoding unsigned and signed integers
- Encoding Characters as Integers, Ascii Table

This lecture

- Parity: injecting redundancy for error detection
- Redundancy in information
- Data compression
- Removing redundancy for data compression
- Huffman codes

PARITY BITS

15110 Principles of Computing, Carnegie Mellon University

Noisy Communication Channels

- Suppose we're sending ASCII characters over the network
- Network communications may erroneously alter bits of a message
- Simple error detection method: the parity bit

Parity

- Idea: for each character (sequence of 7 bits), count the number of bits that are 1
- Sender and receiver agree to use even parity or odd parity; sender sends extra leftmost bit
- Even parity: Set the leftmost bit so that the number of 1 ' s in the byte is even.
- Odd parity: Set the leftmost bit so that the number of 1 ' s in the byte is odd.

[^0]
Parity Example

- " M " is transmitted using even parity.
- "M" in ASCII is 77_{10}, or 1001101 in binary - four of these bits are 1
- Transmit 01001101 to make the number of 1-bits even.
- Receiver counts the number of 1-bits in character received
- if odd, something went wrong, request retransmission
- if even, proceed normally
- Two bits could have been flipped, giving the illusion of correctness. But the probability of 2 or more bits in error is low.

Parity Example

- Seven characters are transmitted here as bytes using even parity along with a special $8^{\text {th }}$ byte.
- The two colors represent 1's and 0's.
- One bit is in error. Can you find it?

Parity and redundancy

- An ASCII character with a correct parity bit contains redundant information
- ...because the parity bit is predictable from the other bits
- This idea leads into the basics of information theory

15110 Principles of Computing,
Carnegie Mellon University

REDUNDANT INFORMATION

Information Content

- We measure information content in bits
- This is related to the fact that we can represent 2^{k} different things with k bits.
- Turn the idea around and if we want to represent M different things, we need $\log _{2} M$ bits
- But this is only true if the M things all have the same probability

Probability and information content

When you get an item of information, how surprised are you? For example, your phone tells you that you have a text. Who from?
-your best friend: you're not surprised; this event has high probability
-Barack Obama: you're surprised; this event has low probability

15110 Principles of Computing,
Carnegie Mellon University

Probability and information content

- Low probability events have high information content; when you learn of them you get a lot of new information
- Barack Obama knows my phone number!!!!
- High probability events have low information content.
- The sun rose in the east this morning. meh
- Notice that a character with correct parity is much more probable than one with incorrect parity

DATA COMPRESSION

\qquad

Data Compression: Why?

- Faster transmission
- e.g. digital video impossible without compression
- Cheaper storage
- e.g. OS X Mavericks compresses data in memory until it needs to be used
\qquad

Data Compression: choices

- Lossless compression

5110 Principles of Computing,
Carnegie Mellon University

Data Compression: choices

- Lossy compression

\qquad

Today: lossless text compression

- Compression:
- Input: fixed-width character codes (e.g. 7-bit ASCII codes) \qquad
- Output: Huffman codes (variable number of bits per character)
- Decompression:
- Huffman codes to fixed-length codes
- Idea: squeeze out redundancy indicated by character probabilities

15110 Principles of Computing
Carnegie Mellon University

ASCII: Fixed-Width Encoding

- Remember: each character is given a binary \qquad code with 7 bits.
- This gives us $2^{7}=128$ different codes for characters.
- Can we make do with fewer bits? Suppose our text is entirely in Hawaiian...
\qquad
\qquad
\qquad
\qquad

The Hawaiian Alphabet

- The Hawaiian alphabet ' consists of 13 characters. E
- ' is the okina which \quad н
sometimes occurs between I vowels (e.g. KAMA'AINA) KA

,

Specialized fixed-width encodings

- Suppose our text file is entirely in Hawaiian
- How many bits do we need for our 13 characters?
- Are 3 bits enough? 000, 001, ..., 111?
- Are 4 bits enough? 0000, 0001, ..., 1111?
- In general, for k equally probable characters we need $\left\lceil\log _{2} k\right\rceil$ bits
- So for Hawaiian we need $\left\lceil\log _{2} 13\right\rceil=4$ bits

Cost of Fixed-Width Encoding

- With a fixed-width encoding scheme of n bits and a file with m characters, need $m n$ bits to store the entire file.
- Example: to store 1000 characters of Hawaiian we would need 4000 bits
- Can we do better? Idea: some characters are used much more often than others.
- If we assign fewer bits to more frequent characters, and more bits to less frequent characters, then the overall length of the message might be shorter.

```
Use a method known as Huffman
encoding named after David Huffman
```


Frequency counts as probabilities

- Example: counting the relative frequency of letters in a large corpus of English text

Hawaiian Alphabet Frequencies		
- The table to the right	A	0.068
shows each character along	E	0.262
with its relative frequency	H	0.072
in Hawaiian words.	I	0.084
- Smaller numbers mean less	K	0.106
common characters	M	0.044
- Frequencies add up to 1.00	N	0.032
and can be viewed as	P	0.106
probabilities	P	0.030
	U	0.059
	W	0.009

Huffman Coding: the process

1. Assign character codes
a. Obtain character frequencies
b. Use frequencies to build a Huffman tree
c. Use tree to assign variable-length codes to characters (store them in a table)
2. Use table to encode (compress) ASCII source file to variable-length codes
3. Use tree to decode (decompress) to ASCII

Building The Huffman Tree

- We use a tree structure to develop the unique binary code for each letter.
- Start with each letter/frequency as its own singlenode tree
- Find the two lowest-frequency trees

Building The Huffman Tree

- Combine two lowest-frequency trees into a tree with a new root with the sum of their frequencies.
- Do it again

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Building The Huffman Tree \qquad

- ...and again, as many times as possible \qquad
\qquad
\qquad
\qquad
\qquad

Building The Huffman Tree

Building The Huffman Tree

Building The Huffman Tree

Building The Huffman Tree

Building The Huffman Tree

Building The Huffman Tree

Building The Huffman Tree

Building The Huffman Tree

15110 Principles of Computing,
Carnegie Mellon University

Building The Huffman Tree

15110 Principles of Computing,
Carnegie Mellon University

5110 Principles of Computing,
Carnegie Mellon University

Using the Tree to Assign Codes

- The path from the root to each character determines the code

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

15110 Principles of Computing
Carnegie Mellon University

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Fixed Width vs. Huffman Coding \qquad

0000		0111	
0001	A	10	$\underline{\text { ALOHA }}$
0010	E	1101	
0011	H	0001	Fixed Width: 00010110100100110001 20 bits
0100	I	1111	
0101	K	001	
0110	L	0000	
0111	M	11000	
1000	N	1110	
1001	\bigcirc	010	Huffman Code: 100000010000110 15 bits
1010	P	110011	
1011	U	0110	
1100	W	110010	

How about...

- humuhumunukunukuapua'a (22 chars) (the reef triggerfish)
- $4454445444344434264242=84$
- vs $22 * 4=88$

Decoding

- In a fixed-width code, the boundaries between letters are fixed in advance: 00010110100100110001
- With Huffman codes, the boundaries are determined by the letters themselves.
- No letter's code can be a prefix of another letter.
- Example: since A is " 10 ", no other letter's code can begin with " 10 ". All the remaining codes begin with " 00 ", " 01 ", or " 11 ".

- To find the character use the bits to determine path from root

Next

- Representing images and sound

[^0]: 15110 Principles of Computing, Cameg

