
1

UNIT 6B
Data Representation:

Exploiting Redundancy

15110 Principles of Computing,

Carnegie Mellon University
1

Last Lecture

• Encoding unsigned and signed integers

• Encoding Characters as Integers, Ascii Table

15110 Principles of Computing,

Carnegie Mellon University
2

This lecture

• Parity: injecting redundancy for error
detection

• Redundancy in information

• Data compression

• Removing redundancy for data compression

– Huffman codes

15110 Principles of Computing,

Carnegie Mellon University
3

2

PARITY BITS
error correction using

15110 Principles of Computing,

Carnegie Mellon University
4

Noisy Communication Channels

• Suppose we’re sending ASCII characters over
the network

• Network communications may erroneously
alter bits of a message

• Simple error detection method: the parity bit

5

Parity

• Idea: for each character (sequence of 7 bits),
count the number of bits that are 1

• Sender and receiver agree to use even parity
or odd parity; sender sends extra leftmost bit

– Even parity: Set the leftmost bit so that the
number of 1’s in the byte is even.

– Odd parity: Set the leftmost bit so that the
number of 1’s in the byte is odd.

15110 Principles of Computing, Carnegie

Mellon University
23

3

Parity Example

• “M” is transmitted using even parity.

• “M” in ASCII is 7710, or 100 1101 in binary

– four of these bits are 1

• Transmit 0 100 1101 to make the number of 1-bits even.

• Receiver counts the number of 1-bits in character received

– if odd, something went wrong, request retransmission

– if even, proceed normally

– Two bits could have been flipped, giving the illusion of
correctness. But the probability of 2 or more bits in error
is low.

15110 Principles of Computing, Carnegie

Mellon University
24

Parity Example

25

7 bit code 1 1 0 1 0 0 0 1 1 0 1 0 0 1

Transmit 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 Even parity

Receive 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1

Odd number of ones. There

must be an error in transmission

H I

Noisy network

15110 Principles of Computing, Carnegie

Mellon University

but receiver
can’t tell

where the
error is

• Seven characters are transmitted here as bytes

using even parity along with a special 8th byte.

• The two colors represent 1’s and 0’s.

• One bit is in error. Can you find it?

9

4

Parity and redundancy

• An ASCII character with a correct parity bit
contains redundant information

• …because the parity bit is predictable from the
other bits

• This idea leads into the basics of information
theory

15110 Principles of Computing,

Carnegie Mellon University
10

REDUNDANT INFORMATION
a powerful tool

11

Information Content

• We measure information content in bits

– This is related to the fact that we can represent 2k
different things with k bits.

– Turn the idea around and if we want to represent
M different things, we need log2 M bits

• But this is only true if the M things all have the same
probability

15110 Principles of Computing,

Carnegie Mellon University
13

5

Probability and information
content

When you get an item of information, how
surprised are you? For example, your phone tells
you that you have a text. Who from?

•your best friend: you’re not surprised; this
event has high probability

•Barack Obama: you’re surprised; this event has
low probability

15110 Principles of Computing,

Carnegie Mellon University
14

Probability and information
content

• Low probability events have high information
content; when you learn of them you get a lot of new
information

– Barack Obama knows my phone number!!!!

• High probability events have low information
content.

– The sun rose in the east this morning. meh

• Notice that a character with correct parity is much
more probable than one with incorrect parity

15110 Principles of Computing,

Carnegie Mellon University
15

DATA COMPRESSION
squeezing out redundancy

15110 Principles of Computing,

Carnegie Mellon University
23

6

Data Compression: Why?

• Faster transmission

– e.g. digital video impossible without compression

• Cheaper storage

– e.g. OS X Mavericks compresses data in memory
until it needs to be used

15110 Principles of Computing,

Carnegie Mellon University
24

Data Compression: choices

• Lossless compression

15110 Principles of Computing,

Carnegie Mellon University
25

good but can be
hard to get

Data Compression: choices

• Lossy compression

15110 Principles of Computing,

Carnegie Mellon University
26

sometimes
good enough

7

Today: lossless text compression

• Compression:

– Input: fixed-width character codes (e.g. 7-bit ASCII
codes)

– Output: Huffman codes (variable number of bits
per character)

• Decompression:

– Huffman codes to fixed-length codes

• Idea: squeeze out redundancy indicated by
character probabilities

15110 Principles of Computing,

Carnegie Mellon University
27

ASCII: Fixed-Width Encoding

• Remember: each character is given a binary
code with 7 bits.

• This gives us 27 = 128 different codes for
characters.

• Can we make do with fewer bits? Suppose
our text is entirely in Hawaiian…

15110 Principles of Computing,

Carnegie Mellon University
28

The Hawaiian Alphabet

• The Hawaiian alphabet
consists of 13 characters.

– ′ is the okina which
sometimes occurs between
vowels (e.g. KAMA’AINA)

15110 Principles of Computing,

Carnegie Mellon University
29

′

A

E

H

I

K

L

M

N

O

P

U

W

8

Specialized fixed-width encodings

• Suppose our text file is entirely in Hawaiian

• How many bits do we need for our 13 characters?

– Are 3 bits enough? 000, 001, …, 111?

– Are 4 bits enough? 0000, 0001, …, 1111?

• In general, for k equally probable characters we need
 log2 k bits

• So for Hawaiian we need log2 13 = 4 bits

15110 Principles of Computing,

Carnegie Mellon University
30

Cost of Fixed-Width Encoding

• With a fixed-width encoding scheme of n bits and a file
with m characters, need mn bits to store the entire file.

– Example: to store 1000 characters of Hawaiian we would need
4000 bits

• Can we do better? Idea: some characters are used much
more often than others.

– If we assign fewer bits to more frequent characters, and more
bits to less frequent characters, then the overall length of the
message might be shorter.

15110 Principles of Computing,

Carnegie Mellon University
32

Use a method known as Huffman
encoding named after David Huffman

Frequency counts as probabilities

• Example: counting the relative frequency of
letters in a large corpus of English text

15110 Principles of Computing,

Carnegie Mellon University
33 image: Wikipedia

e is most frequent, has
highest probability

9

Hawaiian Alphabet Frequencies

• The table to the right
shows each character along
with its relative frequency
in Hawaiian words.

• Smaller numbers mean less
common characters

• Frequencies add up to 1.00
and can be viewed as
probabilities

15110 Principles of Computing,

Carnegie Mellon University
34

′ 0.068

A 0.262

E 0.072

H 0.045

I 0.084

K 0.106

L 0.044

M 0.032

N 0.083

O 0.106

P 0.030

U 0.059

W 0.009

Huffman Coding: the process

1. Assign character codes

a. Obtain character frequencies

b. Use frequencies to build a Huffman tree

c. Use tree to assign variable-length codes to
characters (store them in a table)

2. Use table to encode (compress) ASCII source
file to variable-length codes

3. Use tree to decode (decompress) to ASCII

15110 Principles of Computing,

Carnegie Mellon University
36

Building The Huffman Tree

• We use a tree structure to develop the unique
binary code for each letter.

• Start with each letter/frequency as its own single-
node tree

• Find the two lowest-frequency trees

15110 Principles of Computing,

Carnegie Mellon University
37

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

U
0.059

L
0.044

10

Building The Huffman Tree

• Combine two lowest-frequency trees into a tree
with a new root with the sum of their frequencies.

• Do it again

15110 Principles of Computing,

Carnegie Mellon University
38

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

Building The Huffman Tree

• …and again, as many times as possible

15110 Principles of Computing,

Carnegie Mellon University
39

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

0.039

0.071

Building The Huffman Tree

15110 Principles of Computing,

Carnegie Mellon University
40

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

0.039

0.071 0.089

11

Building The Huffman Tree

15110 Principles of Computing,

Carnegie Mellon University
41

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

0.039

0.071 0.089

0.127

15110 Principles of Computing,

Carnegie Mellon University
42

‘
0.068

A
0.262

E
0.072

K
0.106

H
0.045

M
0.032

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

0.039

0.071

0.127

0.143

Building The Huffman Tree

I
0.084

N
0.083

0.089

15110 Principles of Computing,

Carnegie Mellon University
43

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

0.039

0.071

0.127

0.143

0.167

Building The Huffman Tree

0.089

12

15110 Principles of Computing,

Carnegie Mellon University
44

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

0.039

0.071 0.089

0.127

0.143

0.167

0.195

Building The Huffman Tree

15110 Principles of Computing,

Carnegie Mellon University
45

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106 P

0.030

U
0.059

W
0.009

L
0.044

0.039

0.071 0.089

0.127

0.143

0.167

0.195

0.233

Building The Huffman Tree

15110 Principles of Computing,

Carnegie Mellon University
46

‘
0.068

A
0.262

E
0.072

I
0.084

M
0.032

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

0.039

0.071

0.127

0.143 0.167

H
0.045

K
0.106

L
0.044

0.089

0.195

0.233

0.310

Building The Huffman Tree

13

15110 Principles of Computing,

Carnegie Mellon University
47

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

0.039

0.071

0.089 0.127 0.143 0.167

0.195 0.233 0.310

0.428

Building The Huffman Tree

15110 Principles of Computing,

Carnegie Mellon University
48

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

0.039

0.071

0.089 0.127 0.143 0.167

0.195 0.233 0.310

0.428 0.572

Building The Huffman Tree

15110 Principles of Computing,

Carnegie Mellon University
49

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

0.039

0.071

0.089 0.127 0.143 0.167

0.195 0.233 0.310

0.428 0.572

1.000

• Repeat until you
have one tree with
all nodes linked in.

14

Using the Tree to Assign Codes

• The path from the root to each character
determines the code

15110 Principles of Computing,

Carnegie Mellon University
50

15110 Principles of Computing,

Carnegie Mellon University
51

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

0.039

0.071

0.089 0.127 0.143 0.167

0.195 0.233 0.310

0.428 0.572

1.000

• Label all left
branches with 0
and all right
branches with 1

0

0

0

0

0 0

0

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

15110 Principles of Computing,

Carnegie Mellon University
52

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

0.039

0.071

0.089 0.127 0.143 0.167

0.195 0.233 0.310

0.428 0.572

1.000

• The binary code for
each character is
obtained by following
the path from the root
to the character.

0

0

0

0

0 0

0

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

15

15110 Principles of Computing,

Carnegie Mellon University
53

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

0.039

0.071

0.089 0.127 0.143 0.167

0.195 0.233 0.310

0.428 0.572

1.000

Examples:

H => 0001

A => 10

P => 110011

0

0

0

0

0 0

0

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

Fixed Width vs. Huffman Coding
′ 0000

A 0001

E 0010

H 0011

I 0100

K 0101

L 0110

M 0111

N 1000

O 1001

P 1010

U 1011

W 1100

 15110 Principles of Computing,

Carnegie Mellon University
54

′ 0111

A 10

E 1101

H 0001

I 1111

K 001

L 0000

M 11000

N 1110

O 010

P 110011

U 0110

W 110010

ALOHA

Fixed Width:

0001 0110 1001 0011 0001

20 bits

Huffman Code:

10 0000 010 0001 10

15 bits

How about…

• humuhumunukunukuapua'a (22 chars)
(the reef triggerfish)

• 4454445444344434264242 = 84

• vs 22*4 = 88

15110 Principles of Computing,

Carnegie Mellon University
55

16

Decoding

• In a fixed-width code, the boundaries
between letters are fixed in advance:
 0001 0110 1001 0011 0001

• With Huffman codes, the boundaries are
determined by the letters themselves.

– No letter’s code can be a prefix of another letter.

– Example: since A is “10”, no other letter’s code
can begin with “10”. All the remaining codes
begin with “00”, “01”, or “11”.

15110 Principles of Computing,

Carnegie Mellon University
57

Decoding

15110 Principles of Computing,

Carnegie Mellon University
58

• To find the character use the bits to determine path from root

100000010000110

ALOHA

Next

• Representing images and sound

15110 Principles of Computing,

Carnegie Mellon University
59

