
Data Organization:

Trees and Graphs

Announcements

 The first lab exam is next Week.

We posted exercises for practice on the course web site.

 Please check your grades in Autolab.

If you are missing any grades that should have been

entered, alert your TA and the instructors.

Last Lesson

 Arrays

 Linked lists

 Hash tables

3

No hierarchy or relationship

between data items,

other than their order in the

sequence in the case of

arrays and linked lists

Today

 Data structures for hierarchical data

4

 Hierarchical Data

5

Trees

 A tree is a hierarchical data structure.
 Every tree has a node called the root.

 Each node can have 1 or more nodes as children.

 A node that has no children is called a leaf.

 A common tree in computing is a binary tree.
 A binary tree consists of nodes that have at most 2

children.

 Applications: data compression, file storage,
game trees

6

Binary Tree

7

84

41 96

24

37

50

13

98

Which one is the root?

Which ones are the leaves (external nodes)?

Which ones are internal nodes?

What is the height of this tree?

In order to illustrate

main ideas we label

the tree nodes with

the keys only.

In fact, every node

would also store the

rest of the data

associated with that

key. Assume that

our tree contains

integers keys.

Binary Tree

8

84

41 96

24

37

50

13

98

The root contains the data value 84.

There are 4 leaves in this binary tree: nodes containing 13, 37, 50, 98.

There are 3 internal nodes in this binary tree: nodes containing 41, 96, 24

This binary tree has height 3 – considering root is at level 0,

 the maximum level among all nodes is 3

Level 0

Level 1

Level 2

Level 3

Binary Tree

9

84

41 96

24

37

50

13

98

Note the recursive structure

The yellow node with the key 41 can be viewed

as the root of the left subtree ,

which in turn has

 a left subtree consisting of blue nodes, and

 a right subtree consisting of orange nodes.

Root of Tree

Root of SubTree

Binary Trees: Implementation

 One common implementation of binary trees
uses nodes like a linked list does.

 Instead of having a “next” pointer, each node

has a “left” pointer and a “right” pointer.

10

45

31 70

19 38 86

Level 1

Level 2

Level 3

[45, left, right]

[45,[31,left,right],[70,left,right]]

[45, [31, [19,[],[]], [38, [], []]],
 [70, [], [86, [], []]]
]

Using Nested Lists

 Languages like Python do not let programmers manipulate

pointers explicitly.

 We could use Python lists to implement binary trees. For

example:

[] stands for an empty tree

Arrows point to subtrees

11

45

31 70

19 38 86

Level 1

Level 2

Level 3

Using One Dimensional Lists

 We could also use a flat (one-dimensional list).

12

45 31 70 19 38 86

Level 1 Level 2 Level 3

45

31 70

19 38 86

Level 1

Level 2

Level 3

Dynamic Date Set Operations

 Insert

 Delete

 Search

 Find min/max

 ...

13

Choosing a specific data structure has consequences on which

operations can be performed faster.

Binary Search Tree (BST)

 A binary search tree (BST) is a binary tree that satisfies

the binary search tree ordering invariant stated on the

next slide

14

Example: Binary Search Tree

BST ordering invariant: At any node with key k, all keys of elements in the
left subtree are strictly less than k and all keys of elements in the rightsubtree
are strictly greater than k (assume that there are no duplicates in the tree)

Binary tree

Satisfies the
ordering invariant

Test: Is this a BST?

16

yes

yes

no

Inserting into a BST

For each data value that you wish to insert into the binary
search tree:

 Start at the root and compare the new data value
with the root.

 If it is less, move down left. If it is greater, move down
right.

 Repeat on the child of the root until you end up in a
position that has no node.

 Insert a new node at this empty position.

17

Example

 Insert: 84, 41, 96, 24, 37, 50, 13, 98

18

84

41 96

24

37

50

13

98

Using a BST

 How would you search for an element in a BST?

19

84

41 96

24

37

50

13

98

Searching a BST

 For the key that you wish to search

 Start at the root and compare the key with the root. If

equal, key found.

 Otherwise

 If it is less, move down left. If it is greater, move

down right. Repeat search on the child of the root.

 If there is no non-empty subtree to move to, then

key not found.

20

21

Searching the tree

Example: searching for 6
4

7 1

6

9

8

4 < 6

6 < 7

Can we form a conjecture about worst case complexity?

22

Time complexity of search

6

8 4

9 1 5

1

4

7

6

8

9

Number of nodes: n

Worst case: O(height)

Worst height: n

Tree 1 Tree 2

O(n)

23

Time complexity of search

6

8 4

9 1 5

1

4

7

6

8

9

Number of nodes: n

What if we could always have
balanced trees?

Tree 1 Tree 2

O(log n)

Exercises

 How you would find the minimum and maximum

elements in a BST?

 What would be output if we walked the tree in left-node-

right order?

24

Graphs

25

Graphs

A graph is a data structure that consists of a set of vertices
and a set of edges connecting pairs of the vertices.

 A graph doesn’t have a root, per se.

 A vertex can be connected to any number of other
vertices using edges.

 An edge may be bidirectional or directed (one-way).

 An edge may have a weight on it that indicates a cost for
traveling over that edge in the graph.

Applications: computer networks, transportation systems,
social relationships

26

Undirected and Directed Graphs

27

B

A

D

C

B

A

D

C

Undirected and Directed Graphs

28

B

A

D

C
6

4

5
3

7

A B C D

A 0 6 7 5

B 6 0 4 ∞

C 7 4 0 3

D 5 ∞ 3 0

A B C D

A 0 6 7 5

B ∞ 0 4 ∞

C 2 ∞ 0 3

D ∞ ∞ 9 0

B

A

D

C
6

4

5
3

7

2

9

from

to

from

to

weight

Graphs in Python

29

B

A

D

C
6

4

5
3

7

A B C D

A 0 6 7 5

B 6 0 4 ∞

C 7 4 0 3

D 5 ∞ 3 0

graph =
[[0, 6, 7, 5],
 [6, 0, 4, float('inf')],
 [7, 4, 0, 3],
 [5, float('inf'), 3, 0]]

from

to

An Undirected Weighted Graph

30

0 1 2 3 4 5 6

0 0 10 ∞ 8 7 ∞ ∞

1 10 0 12 7 ∞ ∞ ∞

2 ∞ 12 0 6 ∞ 7 5

3 8 7 6 0 9 4 ∞

4 7 ∞ ∞ 9 0 ∞ 11

5 ∞ ∞ 7 4 ∞ 0 3

6 ∞ ∞ 5 ∞ 11 3 0

0

1

3

2

6

4

5

12

6

4
5

9 8

10

7 11

3

7

7

0 1 2 3 4 5 6

Pitt. Erie Will. S.C. Harr. Scr. Phil.

vertices edges

from

to

Original Graph

31

Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.

12

6
4

5
9

8
10

7 11

3

7

7

A Minimal Spanning Tree

32

Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.
4

5
8

7

3

7

The minimum total cost to connect all vertices using edges from

the original graph without using cycles. (minimum total cost = 34)

Original Graph

33

Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.

12

6
4

5
9

8
10

7 11

3

7

7

Shortest Paths from Pittsburgh

34

Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.
6

4

8
10

7

3

10

14

8

12

15

7

The total costs of the shortest path from Pittsburgh to every other

location using only edges from the original graph.

Graph Algorithms

There are algorithms to compute the minimal spanning
tree of a graph and the shortest paths for a graph.

There are algorithms for other graph operations:

 If a graph represents a set of pipes and the number
represent the maximum flow through each pipe, then
we can determine the maximum amount of water
that can flow through the pipes assuming one vertex is
a “source” (water coming into the system) and one
vertex is a “sink” (water leaving the system)

 Many more graph algorithms... very useful to solve real
life problems.

35

We did not focus on graph algorithms in this unit. We only

covered how to represent them with lists.

Next Time

36

