
Data Organization: 

Trees and Graphs 



Announcements 

 The first lab exam is next Week.   

We posted exercises for practice on the course web site. 

 

 Please check your grades in Autolab.  

If you are missing any grades that should have been 

entered, alert your TA and the instructors.  
 

 



Last Lesson 

 Arrays 

 Linked lists 

 Hash tables 
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No hierarchy or relationship  

between  data items,  

other than their  order in the  

sequence in the case of  

arrays and linked lists  



Today 

 Data structures for hierarchical data 
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 Hierarchical Data 
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Trees 

 A tree is a hierarchical data structure. 
 Every tree has a node called the root. 

 Each node can have 1 or more nodes as children. 

 A node that has no children is called a leaf. 

 A common tree in computing is a binary tree. 
 A binary tree consists of nodes that have at most 2 

children. 

 Applications: data compression, file storage, 
game trees 
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Binary Tree 
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84 

41 96 

24 

37 

50 

13 

98 

Which one is the root? 

Which ones are the leaves (external nodes)? 

Which ones are internal nodes? 

What is the height of this tree? 

In order to illustrate 

main ideas we label 

the tree nodes with 

the keys only. 

In fact, every node 

would also store the 

rest of the data 

associated with that 

key.  Assume that 

our tree  contains 

integers keys. 

  



Binary Tree 
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84 

41 96 

24 

37 

50 

13 

98 

The root contains the data value 84. 

There are 4 leaves in this binary tree: nodes containing 13, 37, 50, 98. 

There are 3 internal nodes in this binary tree: nodes containing 41, 96, 24 

This binary tree has height 3 – considering root is at level 0,  

                                                the maximum level among all nodes is 3 

Level 0 

Level 1 

Level 2 

Level 3 



Binary Tree 
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84 

41 96 

24 

37 

50 

13 

98 

Note the recursive structure 

The yellow node with the key 41 can  be viewed   

as the root of the left subtree ,  

which in turn has  

    a left subtree consisting of blue nodes, and  

    a right subtree consisting  of orange nodes. 

Root of Tree 

Root of SubTree 



Binary Trees: Implementation 

 One common implementation of binary trees 
uses nodes like a linked list does. 

 Instead of having a “next” pointer, each node 

has a “left” pointer and a “right” pointer.  
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45 

31 70 

19 38 86 

Level 1 

Level 2 

Level 3 



[45, left, right] 
 
 
[45,[31,left,right],[70,left,right]] 
 
 
[45, [31, [19,[],[]], [38, [], []]], 
     [70, [],         [86, [], []]] 
] 

Using Nested Lists 

 Languages like Python do not let programmers manipulate 

pointers explicitly.  

 We could use Python lists to implement binary trees. For 

example: 

 

 

 

 

 

 

 

[] stands for an empty tree 

Arrows point to subtrees 
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45 

31 70 

19 38 86 

Level 1 

Level 2 

Level 3 



Using One Dimensional Lists 

 We could also use a flat (one-dimensional list). 
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45 31 70 19 38 86 

Level 1 Level 2 Level 3 

45 

31 70 

19 38 86 

Level 1 

Level 2 

Level 3 



Dynamic Date Set Operations 

 Insert 

 Delete 

 Search 

 Find min/max 

 ... 
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Choosing a specific data structure has consequences on which  

operations can be performed faster. 



Binary Search Tree (BST) 

 A binary search tree (BST) is a binary tree that satisfies 

the binary search tree ordering invariant stated on the 

next slide 
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Example: Binary Search Tree 

BST ordering invariant:  At any node with key k, all  keys of elements in the 
left subtree are strictly less than k and all keys of elements in the rightsubtree 
are strictly greater than k (assume that there are no duplicates in the tree) 

Binary tree 

Satisfies the 
ordering invariant 



Test: Is this a BST? 
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yes 

yes 

no 



Inserting into a BST 

For each data value that you wish to insert into the binary 
search tree: 

 Start at the root and compare the new data value 
with the root.  

 If it is less, move down left. If it is greater, move down 
right.  

 Repeat on the child of the root until you end up in a 
position that has no node.  

 Insert a new node at this empty position. 
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Example 

 Insert: 84, 41, 96, 24, 37, 50, 13, 98 
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Using a BST 

 How would you search for an element in a BST? 
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Searching a BST 

 For the key that you wish to search 

 Start at the root and compare the key with the root. If 

equal, key found.  

 Otherwise 

 If it is less, move down left. If it is greater, move 

down right. Repeat search on the child of the root. 

 If there is no non-empty subtree to move to, then 

key not found. 
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Searching the tree 

Example: searching for  6 
4 

7 1 

6 

9 

8 

4 < 6 

6 < 7 

Can we form a conjecture about worst case complexity? 
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Time complexity of search 

6 

8 4 

9 1 5 

1 

4 

7 

6 

8 

9 

Number of nodes: n 
 
Worst case: O(height) 
 
Worst height: n 
 

Tree 1 Tree 2 

O(n) 
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Time complexity of search 

6 

8 4 

9 1 5 

1 

4 

7 

6 

8 

9 

Number of nodes: n 
 
What if we could always have 
balanced trees?   

Tree 1 Tree 2 

O(log n) 



Exercises 

 How you would find the minimum and maximum 

elements in a BST? 

 

 What would be output if we walked the tree in left-node-

right order? 
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Graphs 
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Graphs 

A graph is a data structure that consists of a set of vertices 
and a set of edges connecting pairs of the vertices. 

 A graph doesn’t have a root, per se. 

 A vertex can be connected to any number of other 
vertices using edges. 

 An edge may be bidirectional or directed (one-way). 

 An edge may have a weight on it that indicates a cost for 
traveling over that edge in the graph. 

Applications: computer networks, transportation systems, 
social relationships 
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Undirected and Directed Graphs 
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B 

A 

D 

C 

B 

A 

D 

C 



Undirected and Directed Graphs 
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B 

A 

D 

C 
6 

4 

5 
3 

7 

A B C D 

A 0 6 7 5 

B 6 0 4 ∞ 

C 7 4 0 3 

D 5 ∞ 3 0 

A B C D 

A 0 6 7 5 

B ∞ 0 4 ∞ 

C 2 ∞ 0 3 

D ∞ ∞ 9 0 

B 

A 

D 

C 
6 

4 

5 
3 

7 

2 

9 

from 

to 

from 

to 

weight 



Graphs in Python 
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B 

A 

D 

C 
6 

4 

5 
3 

7 

A B C D 

A 0 6 7 5 

B 6 0 4 ∞ 

C 7 4 0 3 

D 5 ∞ 3 0 

 
graph =  
[ [ 0, 6, 7, 5 ],  
  [ 6, 0, 4, float('inf') ], 
  [ 7, 4, 0, 3], 
  [ 5, float('inf'), 3, 0] ] 

from 

to 



An Undirected Weighted Graph 
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0 1 2 3 4 5 6 

0 0 10 ∞ 8 7 ∞ ∞ 

1 10 0 12 7 ∞ ∞ ∞ 

2 ∞ 12 0 6 ∞ 7 5 

3 8 7 6 0 9 4 ∞ 

4 7 ∞ ∞ 9 0 ∞ 11 

5 ∞ ∞ 7 4 ∞ 0 3 

6 ∞ ∞ 5 ∞ 11 3 0 
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Pitt. Erie Will. S.C. Harr. Scr. Phil. 

vertices edges 

from 

to 



Original Graph 
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A Minimal Spanning Tree 
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The minimum total cost to connect all vertices using edges from 

the original graph without using cycles. (minimum total cost = 34) 



Original Graph 

33 

Pitt 

Erie 

S.C. 

Will. 

Phil. 

Harr. 

Scr. 

12 

6 
4 

5 
9 

8 
10 

7 11 

3 

7 

7 



Shortest Paths from Pittsburgh 
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The total costs of the shortest path from Pittsburgh to every other 

location using only edges from the original graph. 



Graph Algorithms 

There are algorithms to compute the minimal spanning 
tree of a graph and the shortest paths for a graph. 

There are algorithms for other graph operations: 

 If a graph represents a set of pipes and the number 
represent the maximum flow through each pipe, then 
we can determine the maximum amount of water 
that can flow through the pipes assuming one vertex is 
a “source” (water coming into the system) and one 
vertex is a “sink” (water leaving the system) 

 Many more graph algorithms... very useful to solve real 
life problems. 

 

35 

We did not focus on graph algorithms in this unit. We only  

covered how to represent them with lists. 



Next Time 
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