Organizing Data:

Arrays, Linked Lists

Computer Memory

CPU: Central
Processing
Unit -
Memory Memory Content
Address (usually 32, 64 bits)

(an integer)

Recall Lists

Ordered collection of data

Our mental model is based on indexed data slots

[alefcfolefefefn]]

But how are lists actually stored in computer's memory?2

7/13/2015

7/13/2015

Organizing a in Memory

We are going to see in a few weeks how data fypes such
as integers, strings are represented in computer memory
as sequence of bitfs (Os, 1s).

We will work at a higher-level of abstraction and talk

about how collections of data are organized in memory.

O For example, how are Python lists organized in memory?2
How could we organize our data to capture hierarchical
relationships between data?

Data St

re

The organization of data is a very important
issue for computation.

A data structure is a way of storing data in a

computer so that it can be used efficiently.

O Choosing the right data structure will
allow us to develop certain algorithms for
that data that are more efficient.

Today's Lecture

Two basic structures for ordered sequences:

O Arrays and

O Linked lists

7/13/2015

Arrays in Memory

O An array is a very simple data structure for holding a sequence of
data. They have a direct correspondence with memory system in
most computers.

Typically, array elements are stored in adjacent memory cells. The
subscript (or index) is used to calculate an offset to find the desired

element.
address Content Example: data = [50, 42, 85, 71, 99]
100: 50 Assume we have a byte-addressable
. computer,
104: 42 * integers are stored using 4 bytes (32 bits)
108: 85 * the first element is stored at address 100
(Nothing special about 100, just an example).
1 12.
a7
116: 99 The array could start at any address.

Arrays in Memory

Example: data =[50, 42, 85, 71, 99]
Assume we have a byte-addressable computer, integers are
stored using 4 bytes (32 bits) and our array starts at address 100.

If we want data[3], the computer takes the
address of the start of the array (100 in our example)

and adds the index * the size of an array element
(4 bytes in our example) to find the element we

want. o 50
_ _ 104 42

Location of data[3] is 100 + 3*4 = 112 Jo8: 85

Do you see why it makes sense for the first nz 71
index of an array to be 0? Ne: 99

Arrays: Pros and Cons

Pros:

O Access to an array element is fast since
we can compute its location quickly (constant time).

Cons:

O If we want to insert or delete an element,
we have to shift subsequent elements
which slows our computation down.

O We need a large enough block of memory to hold our
array.

7/13/2015

Arrays in Python

Array module

Arrays are sequence types and behave very much like
lists, except that the type of objects stored in them is
constrained.

We only use Python listsin 15110.
Python lists are akin to structures called dynamic arrays.

Linked Lis

Another data structure that stores a sequence of
data values is the linked list.

Data values in a linked list do not have to be
stored in adjacent memory cells.

To accommodate this feature, each data value
has an additional “pointer” that indicates where
the next data value is in computer memory.

In order to use the linked list, we only need to
know where the first data value is stored.

Linked List Example

Linked list o store the sequence: data =[50, 42, 85, 71, 99]

100: 42 148
Assume each integer and 108: 7420 (null)
each pointer requires 4 bytes. 116:
Al24 100
Starting Location of List 132: 108
(heac) s

124 148: 132

7/13/2015

Linked List Example

To insert a new element,
we only need to change a few pointers.

Example: [dota_|__red |

Insert 20 between 100: 42 156

42 and 85 108: 99 0 (null)
116:

Starting Location 124: 50 100

of List (head) 132: 71 108

124 140:

Assume each integer and 148: % =2

pointer requires 4 bytes. 156: 20 148

Drawing Linked Lists Abstractly

[50, 42, 85, 71, 99]

head
(o]] Ffos] Ffr] Ffor]
Inserting 20 after 42: We link the new node to

the list before breaking

20 the existing link. Why?
head
step 2 step 1

[s0] J{«2] olss] J{n] J{9][nl]

Linked Lists: Pros and Cons

Pros:

O Inserting and deleting data does not require us to move/shift
subsequent data elements.

Cons:

O If we want fo access a specific element, we need to
traverse the list from the head of the list to find it, which can
take longer than an array access.

O Linked lists require more memory. (Why?)

Two-dimensional arrays

Some data can be organized efficiently in

a table (also called a matrix or
2-dimensional array)

Eachcellisdenoted B 0 1 2 3 4
with two subscripts, 01l 3118143]49|65
arow and column 1114]30]32]53] 75
indicator 2|9 |28|38]50]73
B[2][3] =50 3110|224 |37 |58 |62

4|7 (19|40 |46 |66

2D Lists in Python

data = [[1, 2, 3, 4],

7/13/2015

(5 6 7 8] 0 1 2 3
[9, 10, 11, 12] 01|23 |4
! 5/6|7]|8
>>> data[0]
(1, 2, 3, 41 9110|1112
>>> data[1][2]
7

>>> data[2][5]
index error

2D List Example in Python

Find the sum of all elementsin a 2D array

def sum matrix(table):

number of rows in the table

sum = 0
for row in range(0,len(table)):
for col in range(0,len(table[row])):
sum = sum + table[row][col]

return sum

number of columns in the given row of the table

In a rectangular matrix, this number will be fixed
so we could use a fixed number for row such as

len(table[0])

7/13/2015

Tracing the Nested Loop

def sum_matrix(table): row col sum
sum = 0 o0 t
for row in range(0,len(table)): o 1 3
for col in range(0, len(table[row])): 0 2 G
sum = sum + table[row][col] e 3 10
return sum i 0 B
0 1 2 3 11 21
1 2 28
0 1 2 3 4 103 36
1 5 6 7 8 2] 45
2 1 55
2 9| 10| 11| 12 2 2 66

2 3

~
@

len(table) = 3

len(table[row])= 4 for every row

A stack is a data structure that works
on the principle of Last In First Out (LIFO).

O LIFO: The last item put on the stack is
the first item that can be taken off.

Common stack operations:

O Push-put a new element on to
the top of the stack

O Pop -remove the top element from
the top of the stack

Applications: calculators, compilers, programming

RPN

Some modern calculators use
Reverse Polish Notation (RPN)
O Developed in 1920 by Jan Lukasiewicz
O Computation of mathematical formulas
can be done without using any)\
parentheses
Example:
In RPN (3 + 4) *
becomes 3 4 + 5 *

5

7/13/2015

RPN Example

Converting a standard mathematical expression into RPN:

(23-3) (/) (4+06)

| |
Loy LY
23 3 4 6

+
operandl operand2 operator

operandl operand2 operator
/ e

23 3 - 4 6 +
T

J L /

operator

operandl

J
operand2

Evaluating RPN with a Stack

Alzs[3]-[afe[+]/]

Pop top 2 numbers
Perform operation
Push result on S

Output
Pop S

v

Answer: 2

Example Step by Step

RPN:
23 3 - 4 6 + /
Stack Trace:
3 4 10
23 23 20 20 20 20 2

Stacks in Python

You can treat lists as stacks in Python.

7/13/2015

stack X
stack = [] [1
stack.append(1) [1]
stack.append(2) [1,2]
stack.append(3) [1,2,3]
x = stack.pop() [1,2] 3
x = stack.pop() [1] 2
x = stack.pop() [1 1
x = stack.pop() [1 ERROR

Quevues

A quevue is a data structure that
works on the principle of First In First Out (FIFO).

FIFO: The first item stored in the queue
is the first item that can be taken out.

Common queue operations:

Enqueue - put a new element in fo the
rear of the queue

Dequeue —remove the first element
from the front of the queue

Applications: printers, simulations, networks

Hash Tables

