
7/13/2015

1

 Organizing Data:

 Arrays, Linked Lists

Computer Memory

2

CPU: Central

Processing
Unit

Main
Memory

Memory

Address
(an integer)

Memory Content
(usually 32, 64 bits)

Recall Lists

 Ordered collection of data

 Our mental model is based on indexed data slots

 But how are lists actually stored in computer’s memory?

A B C D E F G H

0 1 2 3 4 5 6 7

I

8

7/13/2015

2

Organizing Data in Memory

 We are going to see in a few weeks how data types such

as integers, strings are represented in computer memory

as sequence of bits (0s, 1s).

 We will work at a higher-level of abstraction and talk
about how collections of data are organized in memory.

 For example, how are Python lists organized in memory?

How could we organize our data to capture hierarchical
relationships between data?

Data Structure

 The organization of data is a very important
issue for computation.

 A data structure is a way of storing data in a
computer so that it can be used efficiently.

 Choosing the right data structure will
allow us to develop certain algorithms for
that data that are more efficient.

5

Today’s Lecture

 Two basic structures for ordered sequences:

 Arrays and

 Linked lists

7/13/2015

3

Arrays in Memory

 An array is a very simple data structure for holding a sequence of

data. They have a direct correspondence with memory system in
most computers.

 Typically, array elements are stored in adjacent memory cells. The

subscript (or index) is used to calculate an offset to find the desired
element.

7

Content

50

42

85

71

99

104:

108:

100:

112:

116:

Example: data = [50, 42, 85, 71, 99]

Assume we have a byte-addressable

computer,
* integers are stored using 4 bytes (32 bits)

* the first element is stored at address 100
(Nothing special about 100, just an example).

The array could start at any address.

Arrays in Memory

 Example: data = [50, 42, 85, 71, 99]
Assume we have a byte-addressable computer, integers are
stored using 4 bytes (32 bits) and our array starts at address 100.

 If we want data[3], the computer takes the
address of the start of the array (100 in our example)
and adds the index * the size of an array element
(4 bytes in our example) to find the element we
want.

 Do you see why it makes sense for the first
index of an array to be 0?

 Location of data[3] is 100 + 3*4 = 112

Content

50

42

85

71

99

104:

108:

100:

112:

116:

Arrays: Pros and Cons

 Pros:

 Access to an array element is fast since
we can compute its location quickly (constant time).

Cons:

 If we want to insert or delete an element,

we have to shift subsequent elements
which slows our computation down.

 We need a large enough block of memory to hold our

array.

9

7/13/2015

4

Arrays in Python

• Array module

• Arrays are sequence types and behave very much like

lists, except that the type of objects stored in them is

constrained.

• We only use Python lists in 15110.
Python lists are akin to structures called dynamic arrays.

10

Linked Lists

 Another data structure that stores a sequence of
data values is the linked list.

 Data values in a linked list do not have to be
stored in adjacent memory cells.

 To accommodate this feature, each data value
has an additional “pointer” that indicates where
the next data value is in computer memory.

 In order to use the linked list, we only need to
know where the first data value is stored.

11

Linked List Example

 Linked list to store the sequence: data = [50, 42, 85, 71, 99]

12

Starting Location of List

(head)

124

Assume each integer and

each pointer requires 4 bytes.

data next

42 148

99 0 (null)

50 100

71 108

85 132

108:

116:

100:

124:

132:

140:

148:

156:

7/13/2015

5

Linked List Example

To insert a new element,
we only need to change a few pointers.

Example:
 Insert 20 between
 42 and 85

13

Starting Location

of List (head)

124

Assume each integer and

pointer requires 4 bytes.

data next

42 156

99 0 (null)

50 100

71 108

85 132

20 148

108:

116:

100:

124:

132:

140:

148:

156:

Drawing Linked Lists Abstractly

[50, 42, 85, 71, 99]

Inserting 20 after 42:

14

50 42 85 71 null 99

head

50 42 85 71 null 99

head

20

step 1 step 2

We link the new node to

the list before breaking

the existing link. Why?

Linked Lists: Pros and Cons

 Pros:

 Inserting and deleting data does not require us to move/shift

subsequent data elements.

 Cons:

 If we want to access a specific element, we need to
traverse the list from the head of the list to find it, which can

take longer than an array access.

 Linked lists require more memory. (Why?)

15

7/13/2015

6

Two-dimensional arrays

• Some data can be organized efficiently in

a table (also called a matrix or
2-dimensional array)

• Each cell is denoted
with two subscripts,
a row and column

indicator

16

B 0 1 2 3 4

0 3 18 43 49 65

1 14 30 32 53 75

2 9 28 38 50 73

3 10 24 37 58 62

4 7 19 40 46 66

B[2][3] = 50

2D Lists in Python

data = [[1, 2, 3, 4],

 [5, 6, 7, 8],

 [9, 10, 11, 12]

]

>>> data[0]

[1, 2, 3, 4]

>>> data[1][2]

7

>>> data[2][5]

index error

17

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

2D List Example in Python

 Find the sum of all elements in a 2D array

def sum_matrix(table):

 sum = 0

 for row in range(0,len(table)):

 for col in range(0,len(table[row])):

 sum = sum + table[row][col]

 return sum

18

number of rows in the table

number of columns in the given row of the table

In a rectangular matrix, this number will be fixed

so we could use a fixed number for row such as

len(table[0])

7/13/2015

7

Tracing the Nested Loop

row col sum

0 0 1

0 1 3

0 2 6

0 3 10

1 0 15

1 1 21

1 2 28

1 3 36

2 0 45

2 1 55

2 2 66

2 3 78

19

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

len(table) = 3

len(table[row])= 4 for every row

def sum_matrix(table):
 sum = 0
 for row in range(0,len(table)):
 for col in range(0,len(table[row])):
 sum = sum + table[row][col]
 return sum

Stacks

 A stack is a data structure that works

on the principle of Last In First Out (LIFO).

 LIFO: The last item put on the stack is
the first item that can be taken off.

 Common stack operations:

 Push – put a new element on to

the top of the stack

 Pop – remove the top element from
the top of the stack

 Applications: calculators, compilers, programming

20

RPN

 Some modern calculators use
Reverse Polish Notation (RPN)

 Developed in 1920 by Jan Lukasiewicz

 Computation of mathematical formulas

can be done without using any

parentheses

Example:

In RPN (3 + 4) * 5

becomes 3 4 + 5 *

21

7/13/2015

8

 (23 – 3) / (4 + 6)

 23 3 – 4 6 +

 operand1 operand2 operator operand1 operand2 operator

 23 3 – 4 6 + /

 operand1 operand2 operator

RPN Example

22

Converting a standard mathematical expression into RPN:

Evaluating RPN with a Stack

23

A

S

i == len(A)?

Pop top 2 numbers

Perform operation

Push result on S
Push x on S

i 0

Output

Pop S

yes

no

A

x A[i]

Is x a number?

yes

no

i i + 1
23 – 3 =

20

23 3 - 4 6 + /

23

23 3 - 4 6 + /

3

23

23 3 - 4 6 + /

20

23 3 - 4 6 + /

4

20

23 3 - 4 6 + /

6

4

20

23 3 - 4 6 + /

20

4 + 6 =

10

10

20

23 3 - 4 6 + /

20 / 10

= 2

2

23 3 - 4 6 + /

Answer: 2

Example Step by Step

RPN:

 23 3 - 4 6 + /

Stack Trace:

 6

 3 4 4 10

 23 23 20 20 20 20 2

24

7/13/2015

9

Stacks in Python

You can treat lists as stacks in Python.

 stack x

 stack = [] []

 stack.append(1) [1]

 stack.append(2) [1,2]

 stack.append(3) [1,2,3]

 x = stack.pop() [1,2] 3

 x = stack.pop() [1] 2

 x = stack.pop() [] 1

 x = stack.pop() [] ERROR

25

Queues

A queue is a data structure that

works on the principle of First In First Out (FIFO).

 FIFO: The first item stored in the queue

is the first item that can be taken out.

Common queue operations:

 Enqueue – put a new element in to the

rear of the queue

 Dequeue – remove the first element
from the front of the queue

Applications: printers, simulations, networks

26

Next Time

27

