UNIT 5C Merge Sort

Divide and Conquer

- In computation:
- Divide the problem into "simpler" versions of itself.
- Conquer each problem using the same process (usually recursively).
- Combine the results of the "simpler" versions to form your final solution.

Examples:
Towers of Hanoi, Fractals, Binary Search, Merge Sort, Quicksort, and many, many more

Divide

Now each "group" is (trivially) sorted!

Conquer (merge sorted lists)

Conquer (merge sorted lists)

Conquer (merge sorted lists)

Merge Sort

Input: List a of n elements.
Output: Returns a new list containing the same elements in sorted order.

Algorithm:

1. If less than two elements, return a copy of the list
(base case!)
2. Sort the first half using merge sort.
(recursive!)
3. Sort the second half using merge sort.
(recursive!)
4. Merge the two sorted halves to obtain the final sorted array.

Merge Sort in Python

def msort(list):

```
if len(list) == 0 or len(list) == 1: # base case
        return list[:len(list)] # copy the input
# recursive case
halfway = len(list) // 2
list1 = list[0:halfway]
list2 = list[halfway:len(list)]
newlist1 = msort(list1) # recursively sort left half
newlist2 = msort(list2) # recursively sort right half
newlist = merge(newlist1, newlist2)
return newlist
```


Merge Outline

Input:
Output:

Two lists a and b, already sorted
A new list containing the elements of a and b merged together in sorted order.
Algorithm:

1. Create an empty list c, set index_ a and index_ b to 0
2. While index_ $a<$ length of a and index_ $b<$ length of b
a. Add the smaller of $a[$ index_a] and $b[$ index_ b] to the end of c
b. increment the index of the list with the smaller element
3. If any elements are left over in a or b, add them to the end of c, in order
4. Return c

Filling in the details of Merge

"Add the smaller of $a[$ index_ $a]$ and $b[$ index_ $b]$ to the end of c, and increment the index of the list with the smaller element":
a.If $a[$ index_ $a] \leq b[$ index_ $b]$, then do the following:
i. append $a[$ index_a] to the end of c
ii. add 1 to index_a
b.Otherwise, do the following:
i. append $b[$ index_b] to the end of c
ii. add 1 to index_b

Filling in the details of Merge

"If any elements are left over in a or b, add them to the end of c, in order":
a.If index_ $a<$ the length of list a, then:
i. append all remaining elements of list a to the end of list c, in order
b.Otherwise:
i. append all remaining elements of list b (if any) to the end of list c, in order

Merge in Python

def merge(a, b):
index_a = 0
index_b $=0$
c = []
while index_a < len(a) and index_b < len(b):
if $a\left[i n d e x _a\right]<=b\left[i n d e x _b\right]:$
c.append(a[index_a])
index_a = index_a + 1
else:
c.append(b[index_b])
index_b = index_b + 1
\# when we exit the loop
\# we are at the end of at least one of the lists
c.extend(a[index_a:])
c.extend(b[index_b:])
return c

Example 1: Merge

Example 1: Merge (cont'd)

Example 2: Merge

58677490

58677490 0123
58677490

58677490

58677490
list b
$\begin{array}{llll}19 & 26 & 31 & 44 \\ 19\end{array}$
$19 \quad 263144 \quad 19 \quad 26$
list c
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
$19 \quad 263144 \quad 19 \quad 2631$
$19 \quad 263144 \quad 19263144$

19263144

Co
1926314458677490

Analyzing Efficiency

Constant time operations:
Comparing values and appending elements to the output.
If you merge two lists of size $i / 2$ into one new list of size i, what is the maximum number of appends that you must do? what is the maximum number of comparisons?

Example: say we are merging two pairs of 2 -element lists:
 8 appends for 8 elements

If you have a group of lists to be merged pairwise, and the total number of elements in the whole group is n, the total number of appends will be n.
Worse case number comparisons? $n / 2$ or less, but still $\mathbf{O}(\mathbf{n})$

How many merges?

- We saw that each group of merges of n elements takes $O(n)$ operations.
- How many times do we have to merge n elements to go from n groups of size 1 to 1 group of size n ?
- Example: Merge sort on 32 elements.
- Break down to groups of size 1 (base case).
- Merge 32 lists of size 1 into 16 lists of size 2.
- Merge 16 lists of size 2 into 8 lists of size 4.
- Merge 8 lists of size 4 into 4 lists of size 8 .
- Merge 4 lists of size 8 into 2 lists of size 16.
- Merge 2 lists of size 16 into 1 list of size 32.

- In general: $\log _{2} n$ merges of n elements.

Putting it all together

It takes n appends to merge all pairs to the next higher level. Multiply the number of levels by the number of appends per level.

Big 0

- In the worst case, merge sort requires $\mathbf{O}\left(n \log _{2} n\right)$ time to sort an array with n elements.

Number of operations
$n \log _{2} n$
$(n+n / 2) \log _{2} n$
$4 n \log _{10} n$
$n \log _{2} n+2 n$

Order of Complexity
$\mathrm{O}(n \log n)$
$O(n \log n)$
$O(n \log n)$
$\mathrm{O}(n \log n)$

$\mathrm{O}(\mathrm{N} \log \mathrm{N})$

Merge vs. Insertion Sort

n	Insertion Sort $(\mathbf{n}(\mathbf{n}+1) / 2)$	Merge Sort $\left(\mathbf{n} \log _{2} \mathbf{n}\right)$	Ratio
8	36	24	0.67
16	136	64	0.47
32	528	160	0.30
2^{10}	524,800	10,240	0.02
2^{20}	$549,756,338,176$	$20,971,520$	0.00004

Sorting and Searching

- Recall that if we wanted to use binary search, the list must be sorted.

Insertion sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	(worst case)
Binary search	$\mathrm{O}(\log \mathrm{n})$	(worst case)
Total time:	$\mathrm{O}\left(\mathbf{n}^{2}\right)+\mathbf{O}(\log \mid \mathbf{n})$	$=\mathbf{O}\left(\mathbf{n}^{2}\right)$

- What if we sort the array first using merge sort?
- Merge sort $O(n \log n)$ Binary search $O(\log n)$
(worst case)
(worst case)
Total time(worst case): $O(n \log n)+O(\log n)=O(n \log n)$

Comparing Big O Functions

Merge Sort: Iteratively (optional)

- If you are interested, Explorations of Computing discusses an iterative version of merge sort which you can read on your own.
- This version uses an alternate version of the merge function that is not shown in the textbook but is given in PythonLabs.

Built-in Sort in Python

- Why we study sorting algorithms
- Practice in algorithmic thinking
- Practice in complexity analysis
- You will rarely need to implement your own sort function
- Python method list.sort takes a lists and modifies it while it sorts
- Python function sorted takes a list and returns a new sorted list
- Python uses timsort by Tim Peters (fancy!)

Quicksort

- Conceptually similar to merge sort
- Uses the technique of divide-and-conquer

1. Pick a pivot
2. Divide the array into two subarrays, those that are smaller and those that are greater
3. Put the pivot in the middle, between the two sorted arrays

- Worst case O(n ${ }^{2}$)
- "Expected" O(n log n)

Next Time

- Data Organization

