
UNIT 5C

Merge Sort

15110 Principles of Computing, Carnegie

Mellon University
1

Divide and Conquer

• In computation:

– Divide the problem into “simpler” versions of itself.

– Conquer each problem using the same process

(usually recursively).

– Combine the results of the “simpler” versions to

form your final solution.

Examples:

 Towers of Hanoi, Fractals,

 Binary Search, Merge Sort,

 Quicksort,

 and many, many more

4

3

Divide

Now each "group" is (trivially) sorted!

Group of 8

Groups of 4

Groups of 2

Groups of 1

4

Conquer (merge sorted lists)

5

Conquer (merge sorted lists)

6

Conquer (merge sorted lists)

Merge Sort

Input: List a of n elements.

Output: Returns a new list containing the same

elements in sorted order.

Algorithm:

 1. If less than two elements,

 return a copy of the list (base case!)

 2. Sort the first half using merge sort. (recursive!)

 3. Sort the second half using merge sort. (recursive!)

 4. Merge the two sorted halves to obtain

 the final sorted array.

5

Merge Sort in Python

17

def msort(list):

 if len(list) == 0 or len(list) == 1: # base case

 return list[:len(list)] # copy the input

 # recursive case

 halfway = len(list) // 2

 list1 = list[0:halfway]

 list2 = list[halfway:len(list)]

 newlist1 = msort(list1) # recursively sort left half

 newlist2 = msort(list2) # recursively sort right half

 newlist = merge(newlist1, newlist2)

 return newlist

Merge Outline

Input: Two lists a and b, already sorted

Output: A new list containing the elements of a and b

 merged together in sorted order.

Algorithm:

1. Create an empty list c, set index_a and index_b to 0

2. While index_a < length of a and index_b < length of b

a. Add the smaller of a[index_a] and b[index_b]

to the end of c

b. increment the index of the list with the smaller

element

3. If any elements are left over in a or b,

 add them to the end of c, in order

4. Return c

11

Filling in the details of Merge

"Add the smaller of a[index_a] and b[index_b] to the end of c,

and increment the index of the list with the smaller element":

a.If a[index_a] ≤ b[index_b], then do the following:

i. append a[index_a] to the end of c

ii. add 1 to index_a

b.Otherwise, do the following:

i. append b[index_b] to the end of c

ii. add 1 to index_b

11

Filling in the details of Merge

"If any elements are left over in a or b,

 add them to the end of c, in order":

a.If index_a < the length of list a, then:

i. append all remaining elements of list a to the end of list c,

in order

b.Otherwise:

i. append all remaining elements of list b (if any) to the end

of list c, in order

11

Merge in Python

14

def merge(a, b):

 index_a = 0

 index_b = 0

 c = []

 while index_a < len(a) and index_b < len(b):

 if a[index_a] <= b[index_b]:

 c.append(a[index_a])

 index_a = index_a + 1

 else:

 c.append(b[index_b])

 index_b = index_b + 1

 # when we exit the loop
 # we are at the end of at least one of the lists

 c.extend(a[index_a:])

 c.extend(b[index_b:])

 return c

list a list b list c

 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12

 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12 29

 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12 29 31

 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12 29 31 44

Example 1: Merge

Example 1: Merge (cont’d)

list a list b list c

 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12 29 31 44 58

 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12 29 31 44 58 62

 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12 29 31 44 58 62 74 80

Example 2: Merge

list a list b list c

 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19

 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19 26

 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19 26 31

 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19 26 31 44

 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19 26 31 44 58 67 74 90

Analyzing Efficiency

Constant time operations:

 Comparing values and appending elements to the output.

If you merge two lists of size i/2 into one new list of size i,
 what is the maximum number of appends that you must do?

 what is the maximum number of comparisons?

 Example: say we are merging two pairs of 2-element lists:

 with and with

 8 appends for 8 elements

If you have a group of lists to be merged pairwise, and

 the total number of elements in the whole group is n,

 the total number of appends will be n.

Worse case number comparisons? n/2 or less, but still O(n)

18

How many merges?

• We saw that each group of merges of n elements takes O(n)

operations.

• How many times do we have to merge n elements

to go from n groups of size 1 to 1 group of size n?

• Example: Merge sort on 32 elements.

– Break down to groups of size 1 (base case).

– Merge 32 lists of size 1 into 16 lists of size 2.

– Merge 16 lists of size 2 into 8 lists of size 4.

– Merge 8 lists of size 4 into 4 lists of size 8.

– Merge 4 lists of size 8 into 2 lists of size 16.

– Merge 2 lists of size 16 into 1 list of size 32.

• In general: log
2
n merges of n elements.

15110 Principles of Computing, Carnegie

Mellon University
19

5 = log232

Putting it all together

20

It takes n appends to merge all pairs to the next higher level.

Multiply the number of levels by the number of appends per level.

It
 t
a
k
e
s
 l

o
g

2
 n

 m
e
rg

e
s
 t

o

g
o
 f
ro

m
 n

 g
ro

u
p
s
 o

f
s
iz

e
 1

 t
o

a
 s

in
g
le

 g
ro

u
p
 o

f
s
iz

e
 n

.

Total number

of elements

per level is

always n.

Big O

• In the worst case, merge sort requires

O(n log2 n) time to sort an array with n elements.

 Number of operations Order of Complexity

n log
2
n O(n log n)

(n + n/2) log
2
n O(n log n)

4n log
10

n O(n log n)

n log
2
n + 2n O(n log n)

21

22

O(N log N)

n

(amount of data)

Number of

Operations

16 32 64

64

160

384

96

224

n log2n = O(n log n)

(not drawn to scale)

For an n log2 n algorithm,

the performance is better

than a quadratic algorithm

but just a little worse than

a linear algorithm.

23

Merge vs. Insertion Sort

n Insertion Sort

(n(n+1)/2)

Merge Sort

(n log
2
n)

Ratio

8 36 24 0.67

16 136 64 0.47

32 528 160 0.30

210 524,800 10,240 0.02

220 549,756,338,176 20,971,520 0.00004

Sorting and Searching

• Recall that if we wanted to use binary search,

the list must be sorted.

• What if we sort the array first using merge sort?

– Merge sort O(n log n) (worst case)

Binary search O(log n) (worst case)

Total time(worst case): O(n log n) + O(log n) = O(n log n)

24

Comparing Big O Functions

25

n

(amount of data)

Number of

Operations

O(2n)

O(1)

O(n log n)

O(log n)

O(n2)

O(n)

Merge Sort: Iteratively

(optional)

• If you are interested, Explorations of Computing discusses
an iterative version of merge sort which you can read on
your own.

• This version uses an alternate version of the merge
function that is not shown in the textbook but is given in
PythonLabs.

26

Built-in Sort in Python

• Why we study sorting algorithms

– Practice in algorithmic thinking

– Practice in complexity analysis

• You will rarely need to implement your own sort function

– Python method list.sort

 takes a lists and modifies it while it sorts

– Python function sorted

 takes a list and returns a new sorted list

– Python uses timsort by Tim Peters (fancy!)

27

Quicksort

• Conceptually similar to merge sort

• Uses the technique of divide-and-conquer

1. Pick a pivot

2. Divide the array into two subarrays,

those that are smaller and those that are greater

3. Put the pivot in the middle, between the two sorted

arrays

• Worst case O(n
2
)

• "Expected" O(n log n)

28

29

Next Time

• Data Organization

29

