
UNIT 5A
Recursion: Introduction

1

IN ORDER TO UNDERSTAND RECURSION,

ONE SHOULD FIRST UNDERSTAND RECURSION.

Announcements

• First written exam next week Wednesday

• All material from beginning is fair game

– There are sample exams on the resources page

2

Last time

• Iteration: repetition with variation

• Linear search

• Insertion sort

• A first look at time complexity (measure of
efficiency)

3

This time

• Introduction to recursion

• What it is

• Recursion and the stack

• Recursion and iteration

• Examples of simple recursive functions

• Geometric recursion: fractals

4

5

Recursion

The Loopless Loop

Recursion

• A recursive function is one that calls itself.

def i_am_recursive(x) :
 maybe do some work
 if there is more work to do :
 i_am_recursive(next(x))
 return the desired result

• Infinite loop? Not necessarily, not if next(x)
needs less work than x.

3

Recursive Definitions

Every recursive function definition includes two
parts:

– Base case(s) (non-recursive)
One or more simple cases that can be done
right away

– Recursive case(s)
One or more cases that require solving
“simpler” version(s) of the original problem.

• By “simpler”, we mean “smaller” or “shorter” or
“closer to the base case”.

4

Example: Factorial

• n! = n × (n-1) × (n-2) × … × 1
2! = 2 × 1
3! = 3 × 2 × 1
4! = 4 × 3 × 2 × 1

• alternatively:
0! = 1 (Base case)
n! = n × (n-1)! (Recursive case)
So 4! = 4 × 3!
 3! = 3 × 2!  2! = 2 × 1!  1! = 1 × 0!

5

Recursion conceptually

6

4! = 4(3!)
 3! = 3(2!)
 2! = 2(1!)
 1! = 1 (0!)

Base case
make smaller instances

of the same problem

Recursion conceptually

7

4! = 4(3!)
 3! = 3(2!)
 2! = 2(1!)
 1! = 1 (0!) = 1(1) = 1

Compute the base case

make smaller instances

of the same problem

Recursion conceptually

8

4! = 4(3!)
 3! = 3(2!)
 2! = 2(1!) = 2
 1! = 1 (0!) = 1(1) = 1

Compute the base case

make smaller instances

of the same problem

build up

the result

Recursion conceptually

9

4! = 4(3!)
 3! = 3(2!) = 6
 2! = 2(1!) = 2
 1! = 1 (0!) = 1(1) = 1

Compute the base case

make smaller instances

of the same problem

build up

the result

Recursion conceptually

10

4! = 4(3!) = 24
 3! = 3(2!) = 6
 2! = 2(1!) = 2
 1! = 1 (0!) = 1(1) = 1

Compute the base case

make smaller instances

of the same problem

build up

the result

Recursive Factorial in Python

0! = 1 (Base case)

n! = n × (n-1)! (Recursive case)

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)

11

15

Inside Python Recursion

factorial(4)? S

T

A

C

K

n=4

16

Inside Python Recursion

factorial(4)? = 4 * factorial(3) S

T

A

C

K

n=4

17

Inside Python Recursion

factorial(4)? = 4 * factorial(3) S

T

A

C

K

factorial(3)?

n=4

n=3

18

Inside Python Recursion

factorial(4)? = 4 * factorial(3) S

T

A

C

K

factorial(3)? = 3 * factorial(2)

n=4

n=3

19

Inside Python Recursion

factorial(4)? = 4 * factorial(3) S

T

A

C

K

factorial(3)? = 3 * factorial(2)

factorial(2)?

n=4

n=3

n=2

20

Inside Python Recursion

factorial(4)? = 4 * factorial(3) S

T

A

C

K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

n=4

n=3

n=2

21

Inside Python Recursion

factorial(4)? = 4 * factorial(3) S

T

A

C

K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)?

n=4

n=3

n=2

n=1

22

Inside Python Recursion

factorial(4)? = 4 * factorial(3) S

T

A

C

K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)? = 1 * factorial(0)

n=4

n=3

n=2

n=1

23

Inside Python Recursion

factorial(4)? = 4 * factorial(3) S

T

A

C

K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)? = 1 * factorial(0)

factorial(0) = 1

n=4

n=3

n=2

n=1

n=0

24

Inside Python Recursion

factorial(4)? = 4 * factorial(3) S

T

A

C

K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1) = 1 * 1 = 1

n=4

n=3

n=2

n=1

25

Inside Python Recursion

factorial(4)? = 4 * factorial(3) S

T

A

C

K

factorial(3)? = 3 * factorial(2)

factorial(2) = 2 * 1 = 2

n=4

n=3

n=2

26

Inside Python Recursion

factorial(4)? = 4 * factorial(3) S

T

A

C

K

factorial(3) = 3 * 2 = 6

n=4

n=3

27

Inside Python Recursion

factorial(4) = 4 * 6 = 24 S

T

A

C

K

n=4

Recursive vs. Iterative Solutions

• For every recursive function,
 there is an equivalent iterative solution.

• For every iterative function,
 there is an equivalent recursive solution.

• But some problems are easier to solve one
way than the other way.

• And be aware that most recursive programs
need space for the stack, behind the scenes

12

Factorial Function (Iterative)

def factorial(n):
 result = 1 # initialize accumulator var
 for i in range(1, n+1):
 result = result * i
 return result

13

def factorial(n):
 if n == 0: # base case
 return 1
 else: # recursive case
 return n * factorial(n-1)

Versus (Recursive):

A Strategy for Recursive Problem
Solving (hat tip to Dave Evans)

• Think of the smallest size of the problem and
write down the solution (base case)

• Now assume you magically have a working
function to solve any size. How could you use
it on a smaller size and use the answer to
solve a bigger size? (recursive case)

• Combine the base case and the recursive case

14

31

Iteration to Recursion: exercise

• Mathematicians have proved
π2/6 = 1 + 1/4 + 1/9 + 1/16 + ...

We can use this to approximate π
Compute the sum, multiply by 6, take the square root

def pi_series_iter(n) :
 result = 0
 for i in range(1, n+1) :
 result = result + 1/(i**2)
 return result

def pi_approx_iter(n) :
 x = pi_series_iter(n)
 return (6*x)**(.5)

Let's convert this to a

recursive function

(see file pi_approx.py

for a sample solution.)

https://www.cs.cmu.edu/~15110-n15/lectures/pi_approx.py

32

Recursion on Lists

• First we need a way of getting a smaller input
from a larger one:

– Forming a sub-list of a list:

32

>>> a = [1, 11, 111, 1111, 11111, 111111]

>>> a[1:]
[11, 111, 1111, 11111, 111111]

>>> a[2:]
[111, 1111, 11111, 111111]

>>> a[3:]
[1111, 11111, 111111]

>>> a[3:5]
[1111, 11111]

>>>

the "tail" of list a

Recursive sum of a list

def sumlist(items):

 if items == []:

15

The smallest size list is the

empty list.

Recursive sum of a list

def sumlist(items):

 if items == []:

 return 0

15

Base case:

The sum of an empty list is 0.

Recursive sum of a list

def sumlist(items):

 if items == []:

 return 0

 else:

15

Recursive case:

the list is not empty

Recursive sum of a list

def sumlist(items):

 if items == []:

 return 0

 else:

 ...sumlist(items[1:])...

15

What if we already know the

sum of the list's tail?

Recursive sum of a list

def sumlist(items):

 if items == []:

 return 0

 else:

 return items[0] + sumlist(items[1:])

15

What if we already know the

sum of the list's tail? We can

just add the list's first element!

Tracing sumlist

>>> sumlist([2,5,7])

sumlist([2,5,7]) = 2 + sumlist([5,7])

 5 + sumlist([7])

 7 + sumlist([])

 0

16

def sumlist(items):
 if items== []:
 return 0
 else:
 return items[0] + sumlist(items[1:])

After reaching the base case, the final result is
built up by the computer by adding 0+7+5+2.

39

List Recursion: exercise

• Let's create a recursive function rev(items)

• Input: a list of items

• Output: another list, with all the same items,
 but in reverse order

• Remember: it's usually sensible to break the
list down into its head (first element) and its
tail (all the rest). The tail is a smaller list, and
so "closer" to the base case.

• Soooo… (picture on next slide)
39

Reversing a list: recursive case

40

See file rev_list.py

https://www.cs.cmu.edu/~15110-n15/lectures/rev_list.py

41

Multiple Recursive Calls

• So far we've used just one recursive call to
build up our answer

• The real conceptual power of recursion
happens when we need more than one!

• Example: Fibonacci numbers

41

Fibonacci Numbers

• A sequence of numbers:
0
1
1
2
3
5
8
13
...
 17

+
+

+

+
+

+

Fibonacci Numbers in Nature

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, etc.

• Number of branches on a tree, petals on a flower,
spirals on a pineapple.

• Vi Hart's video on Fibonacci numbers
(http://www.youtube.com/watch?v=ahXIMUkSXX0)

18

http://www.youtube.com/watch?v=ahXIMUkSXX0

Recursive Definition

Let fib(n) = the nth Fibonacci number, n ≥ 0

 – fib(0) = 0 (base case)

 – fib(1) = 1 (base case)

 – fib(n) = fib(n-1) + fib(n-2), n > 1

20

def fib(n):
 if n == 0 or n == 1:
 return n

 else:
 return fib(n-1) + fib(n-2)

Two recursive calls!

Recursive Call Tree

22

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(1) fib(0)

1

2

5

1 0

1 1

2

1 0

1

3

1 0

1

fib(0) = 0

fib(1) = 1

fib(n) = fib(n-1) + fib(n-2), n > 1

Iterative Fibonacci

def fib(n):
 x = 0
 next_x = 1
 for i in range(1,n+1):
 x, next_x = next_x, x + next_x
 return x

23

Faster than the

recursive version.

Why?

 simultaneous

assignment

Geometric Recursion (Fractals)

• A recursive operation performed on
successively smaller regions.

24

Sierpinski's

Triangle

http://fusionanomaly.net/recursion.jpg

Sierpinski’s Triangle

25

Sierpinski’s Carpet

26

(the next slide shows an animation
that could give some people

headaches)

50

Mandelbrot set

51

Source: Clint Sprott, http://sprott.physics.wisc.edu/fractals/animated/

http://sprott.physics.wisc.edu/fractals/animated/

52

Fancier fractals

Now,
Binary
Search

32

recursion for
search

image: Matt Roberts, http://people.bath.ac.uk/mir20/blogposts/bst_close_up.php

