UNIT 5A
 Recursion: Introduction

IN ORDER TO UNDERSTAND RECURSION, ONE SHOULD FIRST UNDERSTAND RECURSION.

Announcements

- First written exam next week Wednesday
- All material from beginning is fair game
- There are sample exams on the resources page

Last time

- Iteration: repetition with variation
- Linear search
- Insertion sort
- A first look at time complexity (measure of efficiency)

This time

- Introduction to recursion
- What it is
- Recursion and the stack
- Recursion and iteration
- Examples of simple recursive functions
- Geometric recursion: fractals

Recursion

The Loopless Loop

Recursion

- A recursive function is one that calls itself.

```
def i_am_recursive(x) :
    maybe do some work
    if there is more work to do :
        i_am_recursive(next(x))
    return the desired result
```

- Infinite loop? Not necessarily, not if next(x) needs less work than X.

Recursive Definitions

Every recursive function definition includes two parts:

- Base case(s) (non-recursive)

One or more simple cases that can be done right away

- Recursive case(s)

One or more cases that require solving "simpler" version(s) of the original problem.

- By "simpler", we mean "smaller" or "shorter" or "closer to the base case".

Example: Factorial

- $\mathrm{n}!=\mathrm{n} \times(\mathrm{n}-1) \times(\mathrm{n}-2) \times \cdots \times 1$
$2!=2 \times 1$
$3!=3 \times 2 \times 1$
$4!=4 \times 3 \times 2 \times 1$
- alternatively:

$$
\begin{aligned}
& 0!=1 \\
& \mathrm{n}!=\mathrm{n} \times(\mathrm{n}-1)!
\end{aligned}
$$

(Base case)
(Recursive case)
So $4!=4 \times 3$!
$\rightarrow 3!=3 \times 2!\rightarrow 2!=2 \times 1!\Rightarrow 1!=1 \times 0!$

Recursion conceptually

$$
4!=4(3!)
$$

$$
\begin{aligned}
& 3!=3(2!) \\
& \qquad 2!=2(1!) \\
& \quad 1!=1(0!)
\end{aligned}
$$

Base case
make smaller instances of the same problem

Recursion conceptually

$$
4!=4(3!)
$$

$$
3!=3(2!)
$$

$$
2!=2(1!)
$$

$$
1!=1(0!)=1(1)=1
$$

Compute the base case
make smaller instances
of the same problem

Recursion conceptually

$$
4!=4(3!)
$$

$$
3!=3(2!)
$$

$$
2!=2(1!) \quad=2
$$

$$
1!=1(0!)=1(1)=1
$$

Compute the base case
make smaller instances of the same problem
build up
the result

Recursion conceptually

$$
4!=4(3!)
$$

$$
\begin{aligned}
& 3!=3(2!) \\
& 2!=2(1!) \\
& 1!=1(0!)=1(1)=1
\end{aligned}=2^{=6}
$$

make smaller instances of the same problem
build up the result

Recursion conceptually

$$
\begin{aligned}
& 4!=4(3!) \\
& 3!=3(2!) \\
& 2!=2(1!) \\
& 1!=1(0!)=1(1)=1
\end{aligned}
$$

make smaller instances of the same problem
build up the result

Recursive Factorial in Python

$$
\begin{aligned}
& \# 0!=1 \\
& \# n!=n \times(n-1)!
\end{aligned}
$$

def factorial(n):
if $\mathrm{n}==0$: \# base case
return 1
else: \# recursive case
return n * factorial(n-1)

Inside Python Recursion

K

Inside Python Recursion

T
C
K

Inside Python Recursion

Inside Python Recursion

Inside Python Recursion

S
$\mathrm{n}=4 \quad$ factorial(4)? $=4 *$ factorial(3)

Inside Python Recursion

$\mathrm{n}=4 \quad$ factorial(4)? $=4$ * factorial(3)

T
 K

n=3

Inside Python Recursion

Inside Python Recursion

Inside Python Recursion

Sn=4 factorial(4)? = $4 *$ factorial(3)
Tn=3 factorial(3)? = 3* factorial(2)

A $\mathrm{n}=2$ factorial(2)? $=2 *$ factorial(1)

Inside Python Recursion

Inside Python Recursion

$\mathrm{n}=4 \quad$ factorial(4)? $=4$ * factorial(3)

T A K

Inside Python Recursion

Inside Python Recursion

T
C K

Recursive vs. Iterative Solutions

- For every recursive function, there is an equivalent iterative solution.
- For every iterative function, there is an equivalent recursive solution.
- But some problems are easier to solve one way than the other way.
- And be aware that most recursive programs need space for the stack, behind the scenes

Factorial Function (Iterative)

def factorial(n):
result = 1 \# initialize accumulator var
for i in range(1, $\mathrm{n}+1$): result = result * i
return result

Versus (Recursive):
def factorial(n):

```
if n == 0: # base case
        return 1
    else:
        # recursive case
        return n * factorial(n-1)
```

A Strategy for Recursive Problem Solving (hat tip to Dave Evans)

- Think of the smallest size of the problem and write down the solution (base case)
- Now assume you magically have a working function to solve any size. How could you use it on a smaller size and use the answer to solve a bigger size? (recursive case)
- Combine the base case and the recursive case

Iteration to Recursion: exercise

- Mathematicians have proved

$$
\pi^{2} / 6=1+1 / 4+1 / 9+1 / 16+\ldots
$$

We can use this to approximate π
Compute the sum, multiply by 6 , take the square root

```
def pi_series_iter(n) :
    result = 0
    for i in range(1, n+1) :
        result = result + 1/(i**2)
    return result
```

def pi_approx_iter(n) : $x=p i _s e r i e s$ iter(n) return (6*x)**(.5)

Let's convert this to a recursive function
(see file pi approx.py for a sample solution.)

Recursion on Lists

- First we need a way of getting a smaller input from a larger one:
- Forming a sub-list of a list:

```
>>> a = [1, 11, 111, 1111, 11111, 111111]
>> a[1:] \leftarrow % the "tail" of list a
[11, 111, 1111, 11111, 111111]
>>> a[2:]
[111, 1111, 11111, 111111]
>>> a[3:]
[1111, 11111, 111111]
>>> a[3:5]
[1111, 11111]
```

>>>

Recursive sum of a list

def sumlist(items):
if items == []:
The smallest size list is the empty list.

Recursive sum of a list

def sumlist(items):
if items == []:
$\begin{array}{ll}\text { return } 0 & \text { Base case: } \\ \text { The sum of an empty list is } 0 .\end{array}$

Recursive sum of a list

def sumlist(items):
if items == []:
return 0
else: Recursive case: the list is not empty

Recursive sum of a list

def sumlist(items):
if items == []:
return 0
else:
...sumlist(items[1:])...
What if we already know the sum of the list's tail?

Recursive sum of a list

def sumlist(items):

 if items == []:return 0
else:
return items[0] + sumlist(items[1:])

What if we already know the sum of the list's tail? We can just add the list's first element!

Tracing sumlist

```
def sumlist(items):
    if items== []:
                        return 0
    else:
                        return items[0] + sumlist(items[1:])
```

>>> sumlist([2,5,7])
sumlist([2,5,7]) = $2+\operatorname{sumlist([5,7])~}$ 5 + sumlist([7]) 7 + sumlist([])

0

After reaching the base case, the final result is built up by the computer by adding $0+7+5+2$.

List Recursion: exercise

- Let's create a recursive function rev(items)
- Input: a list of items
- Output: another list, with all the same items, but in reverse order
- Remember: it's usually sensible to break the list down into its head (first element) and its tail (all the rest). The tail is a smaller list, and so "closer" to the base case.
- Soooo... (picture on next slide)

Reversing a list: recursive case

Multiple Recursive Calls

- So far we've used just one recursive call to build up our answer
- The real conceptual power of recursion happens when we need more than one!
- Example: Fibonacci numbers

Fibonacci Numbers

- A sequence of numbers:

Fibonacci Numbers in Nature

- $0,1,1,2,3,5,8,13,21,34,55,89,144,233$, etc.
- Number of branches on a tree, petals on a flower, spirals on a pineapple.
- Vi Hart's video on Fibonacci numbers (http://www.youtube.com/watch?v=ahXIMUkSXXO)

Recursive Definition

Let $\mathrm{fib}(\mathrm{n})=$ the nth Fibonacci number, $\mathrm{n} \geq 0$

$$
\begin{array}{lrlrl}
- & f i b(0) & =0 & & \text { (base case) } \\
- & \mathrm{fib}(1) & =1 & & \text { (base case) } \\
- & \mathrm{fib}(\mathrm{n}) & =\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2), & & n>1
\end{array}
$$

def fib(n):
Two recursive calls!
if $\mathrm{n}=0$ or $\mathrm{n}==1$: return n
else:

$$
\text { return fib }(n-1)+f i b(n-2)
$$

Recursive Call Tree

Iterative Fibonacci

def fib(n):
$x=0$
next_x $=1$
for \bar{i} in range($1, \mathrm{n}+1$):
x, next_x = next_x, $x+n e x t _x$

Faster than the recursive version. Why?

Geometric Recursion (Fractals)

- A recursive operation performed on successively smaller regions.

http://fusionanomaly.net/recursion.jpg

Sierpinski's Triangle

Sierpinski's Carpet

(the next slide shows an animation that could give some people headaches)

Mandelbrot set

Source: Clint Sprott, http://sprott.physics.wisc.edu/fractals/animated/

Fancier fractals

Now,

Binary Search

recursion for search

