UNIT 5A
Recursion: Introduction

IN ORDER TO UNDERSTAND RECURSION,
ONE SHOULD FIRST UNDERSTAND RECURSION.

Announcements

* First written exam next week Wednesday

e All material from beginning is fair game

— There are sample exams on the resources page

Last time

Iteration: repetition with variation

Linear search

Insertion sort

A first look at time complexity (measure of
efficiency)

This time

Introduction to recursion

What it is

Recursion and the stack

Recursion and iteration

Examples of simple recursive functions

Geometric recursion: fractals

Recursion

The Loopless Loop

Recursion

A recursive function is one that calls itself.

def 1 am recursive(x)
maybe do some work
1f there 1s more work to do :
1 am recursive(next(x))
return the desired result

* Infinite loop? Not necessarily, not if next(x)
needs less work than X.

Recursive Definitions

Every recursive function definition includes two
parts:

— Base case(s) (hon-recursive)
One or more simple cases that can be done

right away

— Recursive case(s)
One or more cases that require solving
“simpler” version(s) of the original problem.

(1 7 13 7 13 7
* By simpler’, we mean "smaller” or "shorter” or
“closer to the base case”.

Example: Factorial

° nl=nxX(n-1) % (n-2)x~x1
2= 2x1
3= 3x2x1
4= 4x3x2x%x1]

* alternatively:

0l=1 (Base case)
nl=n x(n-1)! (Recursive case)
So4! =4 % 3

3[=3x%x 2! 21=2%x1! 1!'=1 % 0!

5

Recursion conceptually

41 = 4(31)
31=3(21)
21=2(1")
11=1(0!)
Balcase

make smaller instances
of the same problem

Recursion conceptually

41 = 4(31)
31=3(21)
21=2(1!)
11=1(0)=1(1)=1

.\

Compute the base case

make smaller instances
of the same problem

Recursion conceptually

4! = 4(3!)
31=3(2!)
21=2(1") =2
11=1(0)=1(1)=1
Crcmtethe base case
make smaller instances build up

of the same problem the result

Recursion conceptually

4! = 4(3!)
31=3(2!) =6
21=2(1") =2
11=1(0)=1(1)=1
Crcmtethe base case
make smaller instances build up

of the same problem the result

Recursion conceptually

41 = 4(31) =24
31 =3(2!) =6
21=2(1!) =2
11=1(0)=1(1)=1

—

Compute the base case

make smaller instances build up
of the same problem the result

10

Recursive Factorial in Python

#0!=1 (Base case)
#n!l=nx (n-1)! (Recursive case)

def factorial(n):
If n==0: # base case
return 1
else: # recursive case
return n * factorial(n-1)

11

Inside Python Recursion

S
T
A
C
K

n=4

Inside Python Recursion

factorial(4)? =(4 * factorial(3)

4

Inside Python Recursion

factorial(4)? = 4 * factorial(3)

S
T
A
C
K

n

n

4

3

Inside Python Recursion

factorial(4)?

4 * factorial(3)

factorial(3)? =3 * factorial(2)

Inside Python Recursion

factorial(4)? = 4 * factorial(3)

factorial(3)?

3 * factorial(2)

Inside Python Recursion

n=4 factorial(4)?

4 * factorial(3)

n=3 factorial(3)?

3 * factorial(2)

* factorial (1)

S
T
/ﬂ\‘ n=2 factorial(2)? =
C
K

A0 >» 40,

Inside Python Recursion

n=4 factorial(4)?

4 * factorial(3)

n=3 factorial(3)?

3 * factorial(2)

n=2 factorial(2)?

2 * factorial(1l)

factorial(l)?

Inside Python Recursion

Il
N

factorial(4)?

n 4 * factorial(3)

n=3 factorial(3)?

3 * factorial(2)

Il
N

n factorial(2)?

2 * factorial(1l)

Il
[

factorial(1l)?

n 1 * factorial(0)

A0 >» 40,

A0 >» 40,

n=4

Inside Python Recursion

factorial(4)? = 4 * factorial(3)

factorial(3)? = 3 * factorial(2)
factorial(2)? = 2 * factorial(1)

factorial 1 * factorial(0)

A0 >» 40,

4

n

n=3

Il
N

n

Il
[

n

Inside Python Recursion

factorial(4)?

factorial(3)?

factorial(2)?

factorial(1l)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1l)

Inside Python Recursion

n=4 factorial(4)?

4 * factorial(3)

n=3 factorial(3)? 3 * factorial(2)

O

S
T
A n=2 factorial(2)
C
K

Inside Python Recursion

4 factorial(4)? = 4 * factarial(3)

n

3 factorial(3)

n

S
T
A
C
K

n=4

S
T
A
C
K

Recursive vs. lterative Solutions

For every recursive function,
there is an equivalent iterative solution.

For every iterative function,
there is an equivalent recursive solution.

But some problems are easier to solve one
way than the other way.

And be aware that most recursive programs
need space for the stack, behind the scenes

Factorial Function (lterative)

def factorial(n):

result = 1 # initialize accumulator var
for 1 in range(l, n+l):

result = result * 1
return result

Versus (Recursive):

def factorial(n):

if n == 0: # base case
return 1

else: # recursive case
return n * factorial(n-1)

13

A Strategy for Recursive Problem
Solving (hat tip to Dave Evans)

* Think of the smallest size of the problem and
write down the solution (base case)

* Now assume you magically have a working
function to solve any size. How could you use
it on a smaller size and use the answer to
solve a bigger size? (recursive case)

e Combine the base case and the recursive case

Ilteration to Recursion: exercise

 Mathematicians have proved
m2/6 =1+1/4 +1/9 +1/16 + ...

We can use this to approximate 1T
Compute the sum, multiply by 6, take the square root

def pi_series iter(n)
result = 0
for 1 1n range(1l, n+1l)
result = result + 1/(1**2)

return result

Let's convert this to a

def pi approx iter(n) recurs_ive function
— — (see file pi_approx.py

X = pl_series_iter(n) {5 4 sample solution.)
return (6*x)**(.5)

https://www.cs.cmu.edu/~15110-n15/lectures/pi_approx.py

Recursion on Lists

* First we need a way of getting a smaller input
from a larger one:

— Forming a sub-list of a list:

a=1[1, 11, 111, 1111, 11111, 111111]

a[l:] <« the "tail" of list a
[11, 111, 1111, 11111, 111111]

al2:]

[111, 1111, 11111, 111111]
al3:]

[1111, 11111, 111111}
al3:5]

[1111, 11111]

Recursive sum of a list

def sumlist(items):

1t 1tems == []: The smallest size list is the

empty list.

Recursive sum of a list

def sumlist(items):
1f items == []:

return 0 Base case:

The sum of an empty list is O.

15

Recursive sum of a list

def sumlist(items):
1f items == []:
return 0

else: Recursive case:

the list is not empty

Recursive sum of a list

def sumlist(items):
1T 1tems == []:
return 0
else:
...sumlist(items[1:])...

T~—_What if we already know the
sum of the list's tail?

Recursive sum of a list

def sumlist(items):
1T 1tems == []:
return 0
else:
return i1tems[0] + sumlist(items[1l:])

\What if we already know the

sum of the list's tail? We can
just add the list's first element!

Tracing sumlist

def sumlist(items):
1if items== []:
return 0
else:
return items[0] + sumlist(items[1:])

>>> sumlist([2,5,7])
sumlist([2,5,7]) = 2 + sumlist([5,7])
5 + sumllst([7])
7 + sumllst([])
* 0

(J
|

(

After reaching the base case, the final result is
built up by the computer by adding 0+7+5+2.

List Recursion: exercise

Let's create a recursive function rev(items)
Input: a list of items

Output: another list, with all the same items,
but in reverse order

Remember: it's usually sensible to break the
list down into its head (first element) and its
tail (all the rest). The tail is a smaller list, and
so 'closer" to the base case.

S0000... (picture on next slide)

Reversing a list: recursive case

See file rev list.py

~

https://www.cs.cmu.edu/~15110-n15/lectures/rev_list.py

Multiple Recursive Calls

e So far we've used just one recursive call to
build up our answer

* The real conceptual power of recursion
happens when we need more than one!

 Example: Fibonacci numbers

Fibonacci Numbers

* A sequence of numbers:

Fibonacci Numbers in Nature

0,11,2,3,5,8, 13, 21, 34, 55, 89, 144, 233, etc.

Number of branches on a tree, petals on a flower,
spirals on a pineapple.

Vi Hart's video on Fibonacci numbers
(http://www.youtube.com/watch?v=ahXIMUkSXXO0)

18

http://www.youtube.com/watch?v=ahXIMUkSXX0

Recursive Definition

Let fib(n) = the nth Fibonacci number,n >0

— fib(0)=0 (base case)
— fib(1)=1 (base case)
— fib(n) = fib(n-1) + fib(n-2), n>1
def fib(n): Two recursive calls!
if n == 0 or n ==

return n

else:
return fib(n-1) + fib(n-2)

20

Recursive Call Tree

2
/
1 1
/N
1 1 0
fib(0) = 0
fib(1) = 1

fib(n) = fib(n-1) + fib(n-2), n > 1

Iterative Fibonacci

def fib(n):
X =0
next x =1
for 1 in range(l,n+1):
X, next x = next x, X + next X

return x//////
Faster than the

simultaneous recursive version.
assignment
Why?

23

Geometric Recursion (Fractals)

* Arecursive operation performed on
successively smaller regions.

Sierpinski's
Triangle

24

Sierpinski’s Triangle

25

Sierpinski's Carpet

L LI . i %
S TR TR TR TR R

. 4
ME I T I B

llll‘lll‘llll.“"‘-I--..l'v
:
5 TR TR TR B B TR R

LR AR AR R EE RN AR NN AR RN

LR T

L L RO

‘,
LT WL

(the next slide shows an animation
that could give some people
headaches)

Mandelbrot set

Source: Clint Sprott, http://sprott.physics.wisc.edu/fractals/animated/

http://sprott.physics.wisc.edu/fractals/animated/

Fancier fractals

Now,

Bmary recursion for
Search ‘ ‘ search

”/m/ ‘%:)’

MK XA ®,°
@ AN
/’0‘* N AR I /(T“, » o“ f,"\\

‘ | ‘ ' ‘ i ‘ ‘ &
v v
/’\’ 7IRROCRAPA R AR APIE S S AN X ¢ ‘
¢ ,‘* C;/\- ;) A | 1 C) £ f',“,\ t ‘
//:\‘*’ 'I’o’o /7‘f 2 i ‘0 A : RN € ": DA s \\\’¢'):\\
) i 1] ; 1]
LY 2.0, \\/,"o'. TG e Rl O ., AR P AP A ,/'.\\'.""O
4 246 SN IO REL W N N : ; 2 . PN LT e A /)
3.{“:/“\.“,’7"\",’ 2 R, A \ %07, UGN e ‘$ ’

' *

i o RV ST . o 2 R Y TS NN AR N0 "'\\'b‘é !
. . S R (R RN
. ;
$)

®
o5

o e &

image: Matt Roberts, http://people.bafh.ac.uk/mir20/bIogposts/bst_close_up.php | 32

