
UNIT 5A 
Recursion: Introduction 
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IN ORDER TO UNDERSTAND RECURSION,  

ONE SHOULD FIRST UNDERSTAND RECURSION.  



Announcements 

• First written exam next week Wednesday 

 

• All material from beginning is fair game 

– There are sample exams on the resources page 
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Last time 

• Iteration: repetition with variation 

 

• Linear search 

 

• Insertion sort 

 

• A first look at time complexity (measure of 
efficiency) 
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This time 

• Introduction to recursion 

• What it is 

• Recursion and the stack 

• Recursion and iteration 

• Examples of simple recursive functions 

• Geometric recursion: fractals 

 

4 



5 

Recursion 

The Loopless Loop 



Recursion 

• A recursive function is one that calls itself. 
 
def i_am_recursive(x) : 
    maybe do some work 
    if there is more work to do : 
        i_am_recursive(next(x)) 
    return the desired result 

 

• Infinite loop? Not necessarily, not if next(x) 
needs less work than x. 
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Recursive Definitions 

Every recursive function definition includes two 
parts: 

– Base case(s) (non-recursive) 
One or more simple cases that can be done 
right away 

– Recursive case(s) 
One or more cases that require solving 
“simpler” version(s) of the original problem. 

• By “simpler”, we mean “smaller” or “shorter” or 
“closer to the base case”. 
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Example: Factorial 

• n! = n × (n-1) × (n-2) × … × 1 
2! =    2 × 1 
3! =    3 × 2 × 1 
4! =    4 × 3 × 2 × 1 

• alternatively: 
0! = 1      (Base case) 
n! = n × (n-1)!    (Recursive case) 
So 4! = 4 × 3! 
 3! = 3 × 2!       2! = 2 × 1!       1! = 1 × 0! 
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Recursion conceptually 
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4! = 4(3!)                                                        
            3! = 3(2!)                                   
                        2! = 2(1!)               
                                    1! = 1 (0!)   

Base case 
make smaller instances  

of the same problem 



Recursion conceptually 
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4! = 4(3!)                                                  
            3! = 3(2!)                                    
                        2! = 2(1!)   
                                    1! = 1 (0!) = 1(1) = 1 
  

Compute the base case 

make smaller instances  

of the same problem 



Recursion conceptually 
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4! = 4(3!)                                                           
            3! = 3(2!)                                          
                        2! = 2(1!)                       = 2  
                                    1! = 1 (0!) = 1(1) = 1 
  

Compute the base case 

make smaller instances  

of the same problem 

build up   

the result  



Recursion conceptually 
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4! = 4(3!)                                                             
            3! = 3(2!)                                         = 6 
                        2! = 2(1!)                       = 2  
                                    1! = 1 (0!) = 1(1) = 1 
  

Compute the base case 

make smaller instances  

of the same problem 

build up   

the result  



Recursion conceptually 
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4! = 4(3!)                                                            = 24 
            3! = 3(2!)                                         = 6 
                        2! = 2(1!)                       = 2  
                                    1! = 1 (0!) = 1(1) = 1 
  

Compute the base case 

make smaller instances  

of the same problem 

build up   

the result  



Recursive Factorial in Python 

# 0! = 1     (Base case) 

# n! = n × (n-1)!    (Recursive case)  

 

def factorial(n): 

    if n == 0:   # base case        

        return 1 

    else:         # recursive case 

        return n * factorial(n-1) 
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Inside Python Recursion 

factorial(4)? S 

T 

A 

C 

K 

n=4 
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Inside Python Recursion 

factorial(4)? = 4 * factorial(3) S 

T 

A 

C 

K 

n=4 
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Inside Python Recursion 

factorial(4)? = 4 * factorial(3) S 

T 

A 

C 

K 

factorial(3)?  

n=4 

n=3 
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Inside Python Recursion 

factorial(4)? = 4 * factorial(3) S 

T 

A 

C 

K 

factorial(3)? = 3 * factorial(2) 

n=4 

n=3 
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Inside Python Recursion 

factorial(4)? = 4 * factorial(3) S 

T 

A 

C 

K 

factorial(3)? = 3 * factorial(2) 

factorial(2)? 

n=4 

n=3 

n=2 
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Inside Python Recursion 

factorial(4)? = 4 * factorial(3) S 

T 

A 

C 

K 

factorial(3)? = 3 * factorial(2) 

factorial(2)? = 2 * factorial(1) 

n=4 

n=3 

n=2 
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Inside Python Recursion 

factorial(4)? = 4 * factorial(3) S 

T 

A 

C 

K 

factorial(3)? = 3 * factorial(2) 

factorial(2)? = 2 * factorial(1) 

factorial(1)?  

n=4 

n=3 

n=2 

n=1 
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Inside Python Recursion 

factorial(4)? = 4 * factorial(3) S 

T 

A 

C 

K 

factorial(3)? = 3 * factorial(2) 

factorial(2)? = 2 * factorial(1) 

factorial(1)? = 1 * factorial(0) 

n=4 

n=3 

n=2 

n=1 
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Inside Python Recursion 

factorial(4)? = 4 * factorial(3) S 

T 

A 

C 

K 

factorial(3)? = 3 * factorial(2) 

factorial(2)? = 2 * factorial(1) 

factorial(1)? = 1 * factorial(0) 

factorial(0) = 1 

n=4 

n=3 

n=2 

n=1 

n=0 
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Inside Python Recursion 

factorial(4)? = 4 * factorial(3) S 

T 

A 

C 

K 

factorial(3)? = 3 * factorial(2) 

factorial(2)? = 2 * factorial(1) 

factorial(1) = 1 * 1 = 1 

n=4 

n=3 

n=2 

n=1 
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Inside Python Recursion 

factorial(4)? = 4 * factorial(3) S 

T 

A 

C 

K 

factorial(3)? = 3 * factorial(2) 

factorial(2) = 2 * 1 = 2 

n=4 

n=3 

n=2 
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Inside Python Recursion 

factorial(4)? = 4 * factorial(3) S 

T 

A 

C 

K 

factorial(3) = 3 * 2 = 6 

n=4 

n=3 
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Inside Python Recursion 

factorial(4) = 4 * 6 = 24 S 

T 

A 

C 

K 

n=4 



Recursive vs. Iterative Solutions 

• For every recursive function,  
 there is an equivalent iterative solution. 

• For every iterative function,  
 there is an equivalent recursive solution. 

• But some problems are easier to solve one 
way than the other way. 

• And be aware that most recursive programs 
need space for the stack, behind the scenes 
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Factorial Function (Iterative) 
 

def factorial(n): 
    result = 1   # initialize accumulator var 
    for i in range(1, n+1): 
        result = result * i 
    return result 
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def factorial(n): 
  if n == 0:     # base case  
      return 1 
  else:          # recursive case 
      return n * factorial(n-1) 
 

Versus (Recursive): 



A Strategy for Recursive Problem 
Solving (hat tip to Dave Evans) 

• Think of the smallest size of the problem and 
write down the solution (base case) 

• Now assume you magically have a working 
function to solve any size. How could you use 
it on a smaller size and use the answer to 
solve a bigger size? (recursive case) 

• Combine the base case and the recursive case 
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Iteration to Recursion: exercise 

• Mathematicians have proved 
π2/6 = 1 + 1/4 + 1/9 + 1/16 + ... 

We can use this to approximate π 
Compute the sum, multiply by 6, take the square root 

def pi_series_iter(n) : 
    result = 0 
    for i in range(1, n+1) : 
        result = result + 1/(i**2) 
    return result 
 
def pi_approx_iter(n) : 
    x = pi_series_iter(n) 
    return (6*x)**(.5) 

Let's convert this to a 

recursive function  

(see file pi_approx.py  

for a sample solution.) 

https://www.cs.cmu.edu/~15110-n15/lectures/pi_approx.py
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Recursion on Lists 

• First we need a way of getting a smaller input 
from a larger one: 

– Forming a sub-list of a list: 

32 

>>> a = [1, 11, 111, 1111, 11111, 111111] 

>>> a[1:] 
[11, 111, 1111, 11111, 111111] 

>>> a[2:] 
[111, 1111, 11111, 111111] 

>>> a[3:] 
[1111, 11111, 111111] 

>>> a[3:5] 
[1111, 11111] 

>>> 

the "tail" of list a 



Recursive sum of a list 

def sumlist(items): 

    if items == []: 
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The smallest size list is the  

empty list. 



Recursive sum of a list 

def sumlist(items): 

    if items == []: 

        return 0 
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Base case: 

The sum of an empty list is 0. 



Recursive sum of a list 

def sumlist(items): 

    if items == []: 

        return 0 

    else: 
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Recursive case: 

the list is not empty 



Recursive sum of a list 

def sumlist(items): 

    if items == []: 

        return 0 

    else: 

        ...sumlist(items[1:])... 
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What if we already know the 

sum of the list's tail? 



Recursive sum of a list 

def sumlist(items): 

    if items == []: 

        return 0 

    else: 

        return items[0] + sumlist(items[1:]) 
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What if we already know the 

sum of the list's tail? We can 

just add the list's first element! 



Tracing sumlist 

>>> sumlist([2,5,7]) 

sumlist([2,5,7]) = 2 + sumlist([5,7]) 

                       5 + sumlist([7]) 

                           7 + sumlist([]) 

                                    0                                          
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def sumlist(items): 
    if items== []: 
        return 0 
    else: 
        return items[0] + sumlist(items[1:]) 

After reaching the base case, the final result is  
built up by the computer by adding 0+7+5+2. 
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List Recursion: exercise 

• Let's create a recursive function rev(items) 

• Input:  a list of items 

• Output:  another list, with all the same items, 
  but in reverse order 

• Remember: it's usually sensible to break the 
list down into its head (first element) and its 
tail (all the rest). The tail is a smaller list, and 
so "closer" to the base case. 

• Soooo… (picture on next slide) 
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Reversing a list: recursive case 
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See file rev_list.py 

https://www.cs.cmu.edu/~15110-n15/lectures/rev_list.py
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Multiple Recursive Calls 

• So far we've used just one recursive call to 
build up our answer 

 

• The real conceptual power of recursion 
happens when we need more than one! 

 

• Example: Fibonacci numbers 
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Fibonacci Numbers 

• A sequence of numbers: 
0  
1  
1  
2 
3 
5 
8 
13 
... 
 17 

+ 
+ 

+ 

+ 
+ 

+ 



Fibonacci Numbers in Nature 

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, etc. 

• Number of branches on a tree, petals on a flower, 
spirals on a pineapple. 

• Vi Hart's video on Fibonacci numbers 
(http://www.youtube.com/watch?v=ahXIMUkSXX0) 
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http://www.youtube.com/watch?v=ahXIMUkSXX0


Recursive Definition 

Let fib(n) = the nth Fibonacci number, n ≥ 0 

    – fib(0) = 0   (base case) 

    – fib(1) = 1   (base case) 

    – fib(n) =  fib(n-1)  +  fib(n-2),  n > 1 

  

20 

 
def fib(n): 
    if n == 0 or n == 1: 
        return n 

     else:   
        return fib(n-1) + fib(n-2) 

Two recursive calls! 



Recursive Call Tree 

22 

fib(5) 

fib(4) fib(3) 

fib(3) fib(2) fib(2) fib(1) 

fib(2) fib(1) fib(1) fib(0) 

fib(1) fib(0) 

fib(1) fib(0) 

1 

2 

5 

1 0 

1 1 

2 

1 0 

1 

3 

1 0 

1 

fib(0) = 0   

fib(1) = 1   

fib(n) = fib(n-1) + fib(n-2), n > 1 



Iterative Fibonacci 
 
def fib(n): 
    x = 0 
    next_x = 1 
    for i in range(1,n+1):  
        x, next_x = next_x, x + next_x 
    return x 
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Faster than the 

recursive version. 

Why? 

  simultaneous 

assignment 



Geometric Recursion (Fractals) 

• A recursive operation performed on 
successively smaller regions. 
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Sierpinski's 

Triangle 

http://fusionanomaly.net/recursion.jpg 



Sierpinski’s Triangle 
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Sierpinski’s Carpet 
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(the next slide shows an animation 
that could give some people 

headaches) 
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Mandelbrot set 
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Source: Clint Sprott, http://sprott.physics.wisc.edu/fractals/animated/ 

http://sprott.physics.wisc.edu/fractals/animated/
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Fancier fractals 



Now,  
Binary  
Search 
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recursion for               
search 

image: Matt Roberts, http://people.bath.ac.uk/mir20/blogposts/bst_close_up.php  


