UNIT 4C Iteration - Sorting Iteration: Scalability & Big O Notation

Last Time

Insertion Sort Algorithm

Writing the Python code

```
def isort(items):
     i = 1
     while i < len(items):
           move left(items, i)
           i = i + 1
     return items
                              insert a[i] into a[0..i]
                               in its correct sorted
                                   position
```

Moving left: examples

$$a = [26, 53, \frac{76}{76}, 30, 14, 91, 68, 42]$$

Searching from right to left starting with 53, the first element less than 76 is 53. Insert 76 to the right of 53 (where it was before).

$$a = [26, 30, 53, 76, 14, 91, 68, 42]$$

Searching from right to left starting with 76, all elements left of 14 are greater than 14. Insert 14 into position 0.

68:

$$a = [14, 26, 30, 53, 76, 91, 68, 42]$$

Searching from right to left starting with 91, the first element less than 68 is 53. Insert 68 to the right of 53.

The move_left algorithm

Given a list a of length n, n > 0 and a value at index i to be "moved left" in the list.

- 1. Remove a[i] from the list and store in x.
- 2. Set j = i-1.
- 3. While $j \ge 0$ and a[j] > x, do the following:
 - a. Subtract 1 from *j*.
- 4. (At this point, what do we know? Either j is ..., or a[j] is ...) Reinsert x into position a[j+1].

From algorithm to code

 Our algorithm says to remove and insert elements of a list.

How do we do that?

There are built –in Python operations for that

Removing a list element: pop

```
>>> a = ["Wednesday", "Monday", "Tuesday"]
>>> day = a.pop(1)
>>> a
['Wednesday', 'Tuesday']
>>> day
'Monday'
>>> day = a.pop(0)
>>> day
'Wednesday'
>>> a
['Tuesday']
```

Inserting an element: insert

```
a = [10, 20, 30] → [10, 20, 30]

a.insert(0, "foo") → ["foo", 10, 20, 30]

a.insert(2, "bar") → ["foo", 10, "bar", 20, 30]

a.insert(5, "baz") → ["foo", 10, "bar", 20, 30, "baz"]
```

move_left in Python

remove the item at position i in list a and store it in x

```
def move_left(items, i):
    x = items.pop(i)
    j = i - 1
    while j >= 0 AND items[j] > x:
        j = j - 1
    items.insert(j + 1, x)
```

insert x at position j+1 of list a, shifting all elements from j+1 and beyond over one position

Insertion sort with a bug

```
def move left(items, i):
    # Insert the element at items[i] into its place
    x = items.pop(i)
    i = i - 1
    while j > 0 and items[j] > x:
         j = j - 1
    items.insert(j + 1, x)
def isort(items):
   # In-place insertion sort
    i = 1
    while i < len(items):</pre>
         move left(items, i)
         i = i + 1
    return items
```

Why should we believe our code works?

We can test it:

```
>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[13, 12, 18, 25, 78, 89, 100]
>>>
```

Hmmmm. What went wrong?

Using assert to debug

 What do we know has to be true for move_left to do the right thing?

- We have a loop that <u>decreases j</u> and checks for an element at index <u>j smaller than or equal to x</u>. When should it stop looping?
 - When the value of j is -1,
 - or when the item at index j is <= x</p>

```
j == -1 or items[j] <= x</pre>
```

So, insert assertions

```
def move left(items, i):
    # Insert the element at items[i] into its place
    x = items.pop(i)
    j = i - 1
    while j > 0 and items[j] > x:
        j = j - 1
    assert(j == -1 \text{ or } items[j] <= x)
    items.insert(j + 1, x)
def isort(items):
    # In-place insertion sort
    i = 1
    while i < len(items):</pre>
        move left(items, i)
        i = i + 1
    return items
```

Run the same test again

```
>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[13, 12, 18, 25, 78, 89, 100]
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
   File "isort.py", line 16, in isort
      move_left(items, i)
   File "isort.py", line 7, in move_left
      assert(j == -1 or items[j] <= x)
AssertionError</pre>
```

This tells us we did something wrong with the loop!

Where's the bug?

```
def move left(items, i):
    # Insert the element at items[i] into its place
    x = items.pop(i)
    j = i - 1
    while j > 0 and items[j] > x:
                                              FALSE!
        j = j - 1
    assert(j == -1 \text{ or } items[j] <= x)
    items.insert(j + 1, x)
def isort(items):
    # In-place insertion sort
    i = 1
    while i < len(items):</pre>
        move left(items, i)
        i = i + 1
    return items
```

The fix

```
def move left(items, i):
    # Insert the element at items[i] into its place
    x = items.pop(i)
    j = i - 1
    while j \ge 0 and items[j] > x:
        j = j - 1
    assert(j == -1 \text{ or } items[j] <= x)
    items.insert(j + 1, x)
def isort(items):
    # In-place insertion sort
    i = 1
    while i < len(items):</pre>
        move left(items, i)
        i = i + 1
    return items
```

Run the same test again

```
>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[12, 13, 18, 25, 78, 89, 100]
```

Hurray!

Do we know for sure that the program will always do the right thing now?

This Lecture

 Now it is time to think about our programs and do some analyses like a computer scientist

Efficiency

- A computer program should be **correct**, but it should also
 - execute as quickly as possible (time-efficiency)
 - use memory wisely (storage-efficiency)
- How do we compare programs (or algorithms in general) with respect to execution time?
 - various computers run at different speeds due to different processors
 - compilers optimize code before execution
 - the same algorithm can be written differently depending on the programming paradigm

Counting Operations

- We measure time efficiency by considering "work" done
 - Counting the number of operations performed by the algorithm.
- But what is an "operation"?
 - assignment statements
 - comparisons
 - function calls
 - return statements

Think of it in a machine-independent way

 We think of an operation as <u>any computation</u> that is independent of the size of our input.

Linear Search

```
# let n = the length of list.
def search(list, key):
    index = 0
    while index < len(list):
        if list[index] == key:
            return index
        index = index + 1
    return None</pre>
```

Best case: the key is the first element in the list

Linear Search: Best Case

```
# let n = the length of list.
def search(list, key):
  index = 0
  while index < len(list):</pre>
     if list[index] == key:
           return index
     index = index + 1
  return None
                               Total:
```

Linear Search: Worst Case

```
# let n = the length of list.
def search(list, key):
   index = 0
   while index < len(list):
       if list[index] == key:
            return index
       index = index + 1
   return None</pre>
```

Worst case: the key is not an

element in the list

Linear Search: Worst Case

```
# let n = the length of list.
def search(list, key):
  index = 0
  while index < len(list):</pre>
                                           n+1
     if list[index] == key:
           return index
     index = index + 1
  return None
                                Total:
                                          3n+3
```

Asymptotic Analysis

- How do we know that each operation we count takes the same amount of time?
 - We don't.
- So generally, we look at the process more abstractly
 - We care about the behavior of a program in the long run (on large input sizes)
 - We don't care about constant factors
 (we care about how many iterations we make,
 not how many operations we have to do in each iteration)

What Do We Gain?

- Show important characteristics in terms of resource requirements
- Suppress tedious details
- Matches the outcomes in practice quite well
- As long as operations are faster than some constant (1 ns? 1 μ s? 1 year?), it does not matter

Linear Search: Best Case Simplified

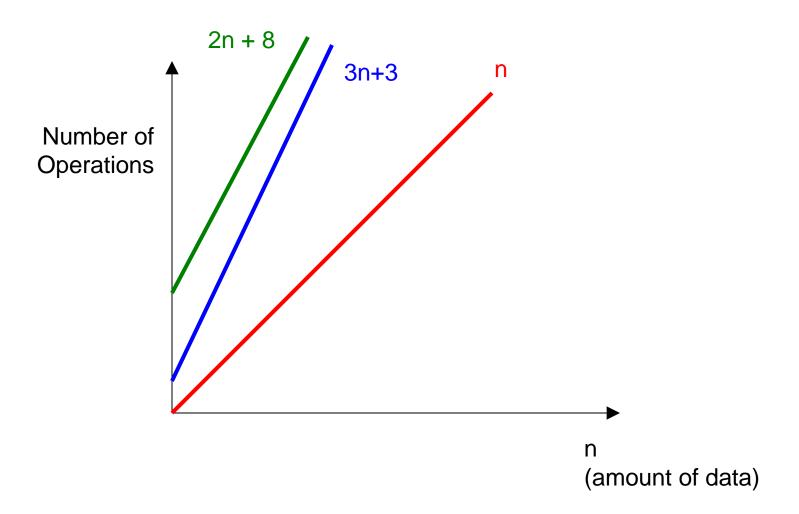
Linear Search: Worst Case Simplified

Order of Complexity

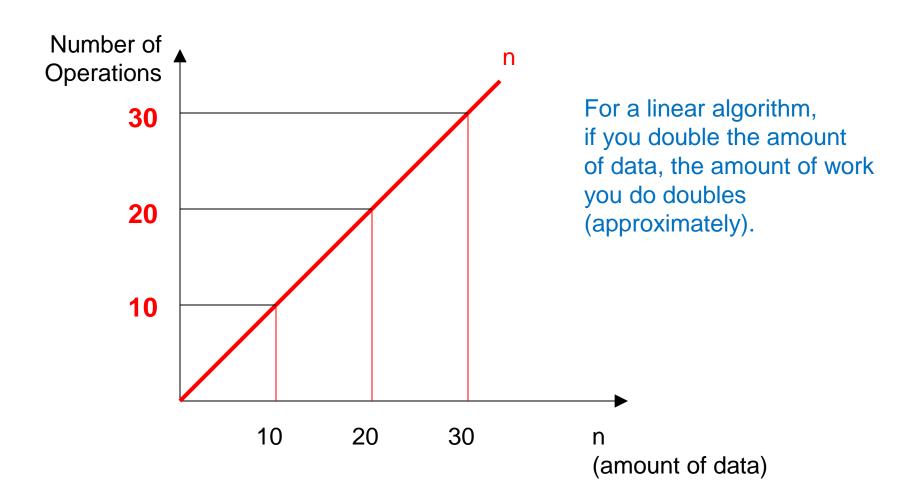
- For very large n, we express the number of operations as the (time) <u>order of complexity</u>.
- For asymptotic upper bound, order of complexity is often expressed using <u>Big-O notation</u>:
 - Number of operations Order of Complexity
 - n
 - 3n+3
 - 2n+8

- O(n) Usually doesn't matter what the
- O(n) constants are...
- O(n) we are only concerned about the highest power of n.

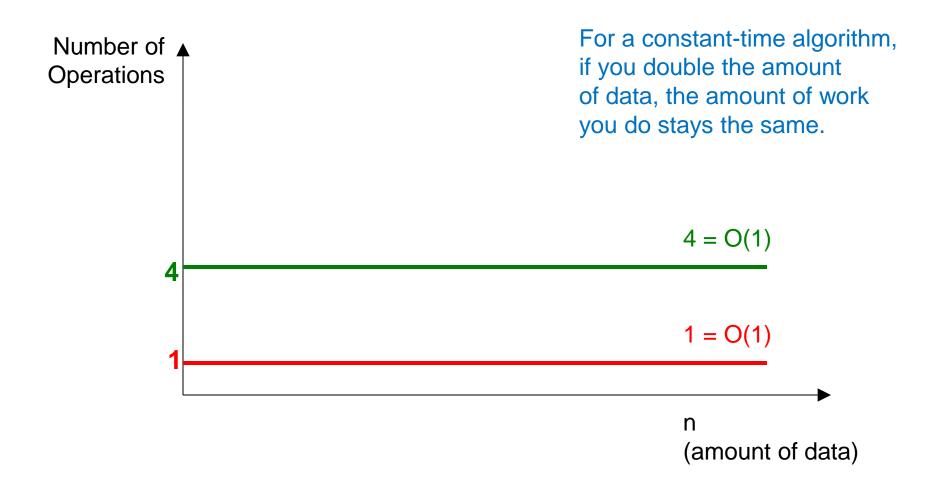
O(n) ("Linear")



O(n)



O(1) ("Constant-Time")



Linear Search

• Best Case: O(1)

Worst Case: O(n)

- Average Case: ?
 - Depends on the distribution of queries
 - But can't be worse than O(n)

Insertion Sort

```
# let n = the length of list.
def isort(list):
    i = 1
    while i != len(list): n-1 iterations
        move_left(list, i)
        i = i + 1
    return list
```

Insertion Sort: Worst Case

- When i = 1, move_left shifts at most 1 element.
- When i = 2, move_left shifts at most 2 elements.
- •
- When i = n-1, move_left shifts at most n-1 elements.
- The maximum <u>number of elements shifted</u>, S, approximates the total amount of work done in the worst case.
- $S = 1 + 2 + ... + (n-1) = n(n-1)/2 = O(n^2)$

In general by calculating shifts

move_left

```
# let n = the length of list.

def move_left(a, i):
    x = a.pop(i)
    j = i - 1
    while j >= 0 and a[j] > x: i iterations
        j = j - 1
    a.insert(j + 1, x)
```

but how long do pop and insert take?

Calculating in Detail

Measuring pop and insert

2 million elements in list, 1000 inserts:0.7548720836639404 seconds 4 million elements in list, 1000 inserts:1.6343820095062256 seconds 8 million elements in list, 1000 inserts:3.327040195465088 seconds

8 million elements in list, 1000 pops:2.031071901321411 seconds 16 million elements in list, 1000 pops:4.033380031585693 seconds 32 million elements in list, 1000 pops:8.06456995010376 seconds

Doubling the size of the list doubles the cost (time) of insert or pop. These functions take linear time.

move_left

Insertion Sort: what is the cost of move_left?

Total cost (at most): n + i + n

But what is i? To find out, look at isort, which calls move_left, supplying a value for i

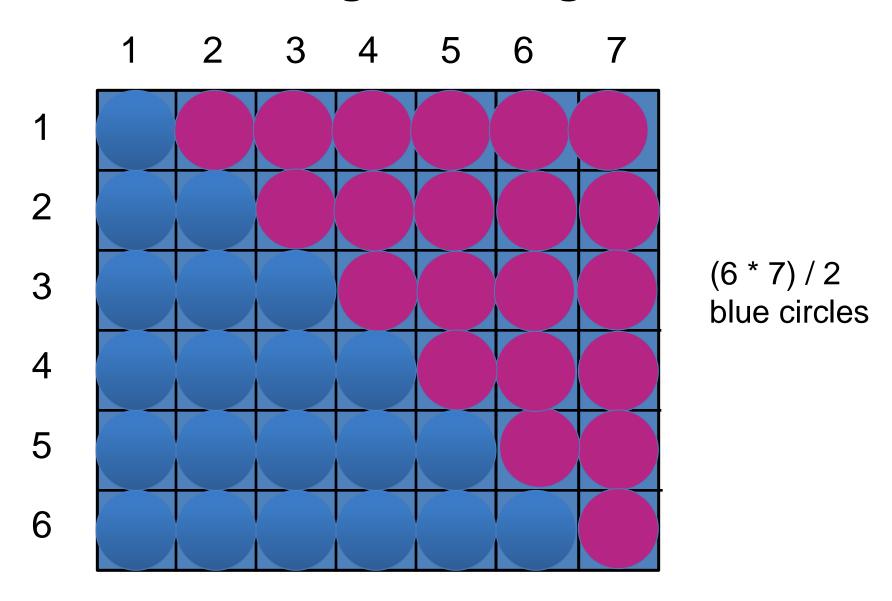
Insertion Sort: what is the cost of the whole thing?

```
# let n = the length of list.
def isort(list):
      i = 1
      while i != len(list): #n-1 iterations
             move left(list,i) #i goes from 1 to n-1
             i = i + 1
       return list
Total cost: cost of move_left as i goes from 1 to n-1
Cost of all the move lefts: n + 1 + n
                            + n + 2 + n
                            + n + 3 + n
                            + n + n - 1 + n
```

Figuring out the sum

•
$$n + 1 + n$$
 $(n-1)*2n$
• $+ n + 2 + n$ $+ 1$
• $+ n + 3 + n$ $+ 2$
• ... $+ 3$
• $+ n + n-1 + n$... $+ n-1$

Adding 1 through n-1



Adding 1 through n-1

- We saw 1 + 2 + ... + 6 = (6 * 7) / 2
- Generalizing, 1 + 2 + ... + n-1 = (n-1)(n) / 2
- So our whole cost is:

$$(n-1)*2n + 1 + 2 + 3 ... + n-1$$

= $(n-1)*2n + (n-1)(n) / 2$
= $2n^2 - 2n + (n^2 - n) / 2$
= $(5n^2 - 5n) / 2 = (5/2)n^2 - (5/2)n$

Observe that the highest-order term is n²

Order of Complexity

Number of operations	Order of Complexity
n^2	O(n ²)
(5/2)n ² - (1/2)n	O(n²)

 $O(n^2)$

Usually doesn't matter what the constants are... we are only concerned about the highest power of n.

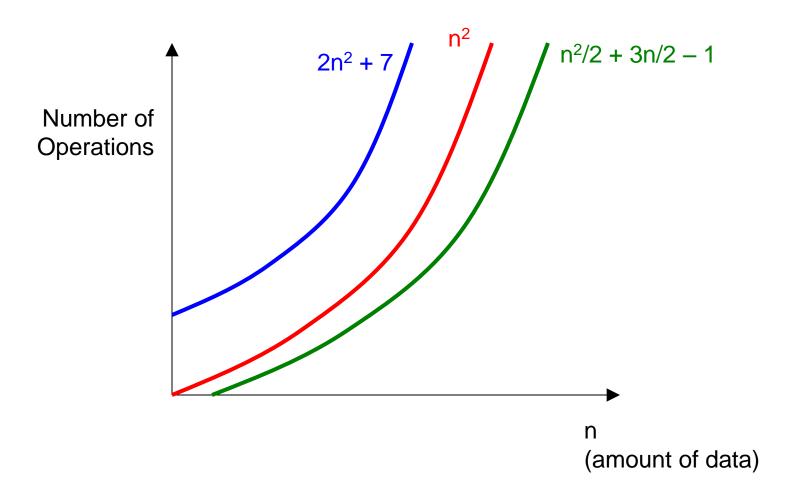
 $2n^2 + 7$

f(n) is O(g(n)) means $f(n) < g(n) \cdot k$ for some positive k

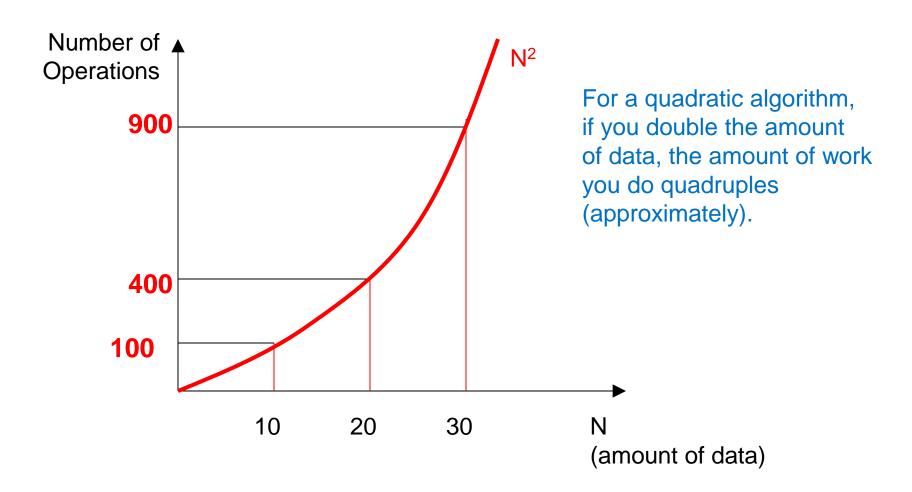
Keep It Simple

- "Big O" notation expresses an upper bound: f(n) is O(g(n)) means $f(n) < g(n) \cdot k$ (whenever n is large enough)
- So if f(x) is $O(n^2)$, then f(x) is $O(n^3)$ too!
- But we always use the smallest possible function, and the simplest possible.
- We say $3n^2 + 4n + 1$ is $O(n^2)$, not $O(n^3)$
- We say $3n^2 + 4n + 1$ is $O(n^2)$, not $O(3n^2 + 4n)$
- ...even though all of the above are true

O(n²) ("Quadratic")



$O(n^2)$



Tomorrow

A new technique called recursion

More sorting and searching using recursion

 Do the online module on recursion as a preparation for the next lecture

Now - Review