
 Algorithmic Thinking:

 Computing with Lists

So Far in Python

 Data types: int, float, Boolean, string

 Assignments, function definitions

 Control structures: For loops, while loops, conditionals

Last Lecture

 More algorithmic thinking

 Example: Finding the maximum in a list

 Composite (structured) data type: lists

 Storing and accessing data in lists

 Modifying lists

 Operations on lists

 Iterating over lists

Any confusion?

 Print vs Return -------------

def ?????? (a, b):
 result = a + b
 print (result)

 Between Data Types ------

"3 + 5" vs 3 + 5

def ??????(a, b):
 result = a + b
 return (result)

 6 * 5 vs 6 * 5.0

Representing Lists in Python

 We will use a list to represent a collection of

data values.

 scores = [78, 93, 80, 68, 100, 94, 85]

colors = [‘red’, ‘green’, ‘blue’]
mixed = [‘purple’, 100, 90.5]

 A list is an ordered sequence of values and

may contain values of any data type.

 In Python lists may be heterogeneous

(may contain items of different data types).

5

Some List Operations

 Indexing (think of subscripts in a sequence)

 Length (number of items contained in the list)

 Slicing

 Membership check

 Concatenation

 …

6

Some List Operations

>>> names = ["Al", "Jane", "Jill", "Mark"]

>>> len(names)
4

>>> Al in names
Error ... name 'Al' is not defined

>>> "Al" in names
True

>>> names + names
['Al','Jane','Jill','Mark','Al','Jane','Jill','Mark']

7

Accessing List Elements

"Al" "Jane" "Jill" "Mark"

0 1 2 3
indices

list elements

>>> names[0]
'Al'

>>> names[4]
Traceback (most recent call last):
 File "<pyshell#8>", line 1, in <module>
 names[4]
IndexError: list index out of range

>>> names[3]
'Mark'

>>> names[len(names)-1]
'Mark'

names

Slicing Lists

0 1 2 3 indices

list elements

>>> names[1:3]
['Jane', 'Jill']

>>> names[0:4:2]
[‘Al', 'Jill']

slice

incremental slice

"Al" "Jane" "Jill" "Mark" names

Start

End

Step

Slicing Lists

0 1 2 3 indices

list elements

 names, names[0:4],
 names[0,4,1] ['Al', 'Jane‘, 'Jill', 'Mark']

>>> names[1:3] ['Jane', 'Jill']
>>> names[1:4] ['Jane', 'Jill', 'Mark']

>>> names[0:4:2] [‘Al', 'Jill']
>>> names[:3] ['Al', 'Jane', 'Jill']

>>> names[:2] ['Al', 'Jane']
>>> names[2:] ['Jill', 'Mark']

"Al" "Jane" "Jill" "Mark" names

11

source: docs.python.org

Modifying Lists

>>> names = ['Al', 'Jane', 'Jill', 'Mark']
>>> names[1] = "Kate"
>>> names
['Al', 'Kate', 'Jill', 'Mark']

>>> names[1:3] = ["Me", "You"]
>>> names
['Al', 'Me', 'You', 'Mark']

>>> names[1:3] = ["AA", "BB", "CC", "DD"]
['Al', 'AA', 'BB', 'CC', 'DD', 'Mark']

The list grew in length, we could make it shrink as well.

12

>>> a = [1, 2, 3]
>>> a[0:0] = [-2, -1, 0]
>>> a
[-2, -1, 0, 1, 2, 3]

>>> a = [1, 2, 3]
>>> a[0:1] = [-2, -1, 0]
>>> a
[-2, -1, 0, 2, 3]

13

source: docs.python.org

>>> west = ["CA", "OR"]
>>> east = ["NY", "MA"]
>>> all = [west, east]
>>> all
[["CA", "OR"],["NY", "MA"]]

Aliasing

"NY" "MA"

east west

"CA" "OR"

all

2 paths to the list containing state names in the West Coast.

• One through the variable west, >>> west

• The other through the variable all. >>> all[0]
This is called aliasing.

Mutability Requires Caution

>>> west = ["CA", "OR"]
>>> east = ["NY", "MA"]
>>> all = [west, east]
>>> west.append("WA")
>>> all
[['CA', 'OR', 'WA'], ['NY', 'MA']]

All variables that are bound to the

modified object change in value.

"NY" "MA" east west "CA" "OR"

all

"WA"

Creating Copies

"NY" "MA" east west "CA" "OR"

all west east

>>> west = ["CA", "OR"]
>>> east = ["NY", "MA"]
>>> all2 = [west[:], east[:]]
>>> all2
[["CA", "OR"], ["NY", "MA"]]

"NY" "MA" "CA" "OR"

all2

Creates a shallow copy.

If list items were mutable objects,

as opposed to strings as we have here,

we would have needed something more.

Don’t worry about it now.

No matter how I modify west,

all1 will not see it.

[,] [,]

What Happens in the Memory?

>>> west = ["CA", "OR"]
>>> east = ["NY", "MA"]
>>> all = [west, east]
>>> all2 = [west[:], east[:]]

>>> print(id(all), all)
48231728 [["CA", "OR"], ["NY", "MA"]]

>>> print(id(all2), all2)
48221880 [["CA", "OR"], ["NY", "MA"]]

>>> all2 = [west[:], east[:]] this is more like
>>> all2 = [["CA", "OR"], ["NY", "MA"]]

Iterating over Lists

def print_colors(colors):

 for index in range(0, len(colors)):

 print(colors[index])

>>> print_colors(["red", "blue", "green"])
red
blue
green

18

Alternative Version

def print_colors(colors):
 for c in colors:
 print(c)

19

Python binds c to the first item in colors,

then execute the statement in the loop body,

binds c to the next item in the list colors etc.

Compare with previous version

def print_colors(colors):
 for index in range(0, len(colors)):
 print(colors[index])

Finding the max using Python

def findmax(lst):

 max_so_far = lst[0]

 for i in range(1,len(lst)):

 if lst[i] > max_so_far:

 max_so_far = lst[i]

 return max_so_far

20

set 1st item as the maximum found

Check all following items

if you find a bigger value
 # update the maximum

After checking all values
 # return the maximum found

Alternative Version

def findmax(lst):

 max_so_far = lst[0]

 for item in lst:

 if item > max_so_far:

 max_so_far = item

 return max_so_far

21

“For each item in the list...”

initialize the maximum

if it is bigger then maximum

keep it as the new maximum

return the maximum after checkin all

Summary

 The list data type (ordered and dynamic collections of

data)

 Creating lists

 Accessing elements

 Modifying lists

 Iterating over lists

23

A 2000 year old algorithm

(procedure) for generating a table

of prime numbers.

2, 3, 5, 7, 11, 13, 17, 23, 29, 31, …

What Is a “Sieve” or “Sifter”?

Separates stuff you want from stuff you don’t:

We want to separate prime numbers.

24

Prime Numbers

 An integer is “prime” if it is not divisible by any smaller
integers except 1.

 10 is not prime because 10 = 2 × 5

 11 is prime

 12 is not prime because 12 = 2 × 6 = 2 × 2 × 3

 13 is prime

 15 is not prime because 15 = 3 × 5

25

Testing Divisibility in Python

 x is “divisible by” y if the remainder is 0 when we
divide x by y

 15 is divisible by 3 and 5, but not by 2:

>>> 15 % 3
0
>>> 15 % 5
0
>>> 15 % 2
1

26

The Sieve of Eratosthenes

27

Start with a table of integers
from 2 to N.

Cross out all the entries that

are divisible by the primes

known so far.

The first value remaining is

the next prime.

Finding Primes Between 2 and 50

 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

28

2 is the first prime

Finding Primes Between 2 and 50

 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

29

Filter out everything divisible by 2.

 Now we see that 3 is the next prime.

Finding Primes Between 2 and 50

 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

30

Filter out everything divisible by 3.

 Now we see that 5 is the next prime.

Finding Primes Between 2 and 50

 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

31

Filter out everything divisible by 5.

 Now we see that 7 is the next prime.

Finding Primes Between 2 and 50

 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

32

Filter out everything divisible by 7.

 Now we see that 11 is the next prime.

Finding Primes Between 2 and 50

 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

33

Since 11 x 11 > 50, all remaining numbers

must be primes. Why?

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order.
 (Assume n > 1.)

2. Create an empty list primes.

3. For each element in numlist

a. If element is not marked, copy it to the end of primes.

b. Mark every number that is a multiple of the most recently
discovered prime number.

Output: The list of all prime numbers less than or equal to n

34

Automating the Sieve

Use two lists: candidates, and confirmed primes.

35

numlist primes

2 3 4 5

6 7 8 9

10 11 12 13

…

Steps 1 and 2

36

numlist primes

2 3 4 5

6 7 8 9

10 11 12 13

…

Step 3a

37

numlist primes

2 3 4 5

6 7 8 9

10 11 12 13

…

2

Append the current number in numlist to the end of primes.

Step 3b

38

numlist primes

2 3 4 5

6 7 8 9

10 11 12 13

…

2

 Cross out all the multiples of the last number in primes.

Iterations

39

numlist primes

2 3 4 5

6 7 8 9

10 11 12 13

…

2 3

Append the current number in numlist to the end of primes.

Iterations

40

numlist primes

2 3 4 5

6 7 8 9

10 11 12 13

…

2 3

 Cross out all the multiples of the last number in primes.

Iterations

41

numlist primes

2 3 4 5

6 7 8 9

10 11 12 13

…

2 3 5

Append the current number in numlist to the end of primes.

Iterations

42

numlist primes

2 3 4 5

6 7 8 9

10 11 12 13

…

2 3 5

 Cross out all the multiples of the last number in primes.

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order.
 (Assume n > 1.)

2. Create an empty list primes.

3. For each element in numlist

a. If element is not marked, copy it to the end of primes.

b. Mark every number that is a multiple of the most recently
discovered prime number.

Output: The list of all prime numbers less than or equal to n

43

Implementation Decisions

 How to implement numlist and primes?

 For numlist we will use a list in which crossed out elements are

marked with the special value None. For example,

 [None, 3, None, 5, None, 7, None]

 Use a helper function for step 3.b. We will call it

sift.

Relational Operators

 If we want to compare two integers to determine their relationship,

we can use these relational operators:

 < less than <= less than or equal to

 > greater than >= greater than or equal to

 == equal to != not equal to

 We can also write compound expressions using the Boolean

operators and and or.

 x >= 1 and x <= 1

45

Sifting: Removing Multiples of a Number

Filters out the multiples of the number k from list by marking

them with the special value None (greyed out ones).

def sift(lst, k):
 # marks multiples of k with None
 i = 0
 while i < len(lst):
 if (lst[i]!=None) and lst[i]%k == 0:
 lst[i] = None
 i = i + 1
 return lst

Sifting: Removing Multiples of a Number

(Alternative version)

def sift2(lst,k):
 i = 0
 while i < len(lst):
 if lst[i] % k == 0:
 lst.remove(lst[i])
 else:
 i = i + 1
 return lst

Filters out the multiples of the number k from list

by modifying the list. Be careful in handling indices.

A Working Sieve

Helper function that we defined before

We could have used

primes[len(primes)-1] instead.

def sieve(n):
 numlist = list(range(2,n+1))
 primes = []
 for i in range(0, len(numlist)):
 if numlist[i] != None:
 primes.append(numlist[i])
 sift(numlist, numlist[i])
 return primes

Observation for a Better Sieve

49

We stopped at 11 because all the

remaining entries must be prime since

11 × 11 > 50.

 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

A Better Sieve

def sieve(n):
 numlist = list(range(2, n + 1))
 primes = []
 i = 1
 while i <= math.sqrt(n):
 if numlist[i] != None:
 primes.append(numlist[i])
 sift(numlist, numlist[i])
 i = i + 1
 return primes + numlist

Algorithm-Inspired Sculpture

51

The Sieve of Eratosthenes,

1999 sculpture by Mark di

Suvero. Displayed at

Stanford University.

