Algorithmic Thinking:

Computing with Lists

So Far in Python

Data types: int, float, Boolean, string
Assignments, function definitions

Control structures: For loops, while loops, conditionals

Last Lecture

More algorithmic thinking
O Example: Finding the maximum in a list

Composite (structured) data type: lists
O Storing and accessing data in lists

O Modifying lists

O Operations on lists

O [terating over lists

Any confusione

def 22?7?22 (a, b): def 2?2??2??(a, b):
result = a + b result = a + b
print (result) return (result)

Between Data Types ------ --c-cmacmaa--
"3 45" vs 3 +5 6 *5 vs 6 * 5.0

Representing Lists in Python

We will use a list to represent a collection of

data values.
scores = [78, 93, 80, 68, 100, 94, 85]
colors = [‘red’, ‘green’, ‘blue’]
mixed = [‘purple’, 100, 90.5]

A list is an ordered sequence of values and
may contain values of any data type.

In Python lists may be heterogeneous
(may contain items of different data types).

Some List Operations

Indexing (think of subscripts in a sequence)
Length (number of items contained in the list)
Slicing

Membership check

Concatenation

Some List Operations

names = ["Al", "Jane", "Jill", "Mark"]

len(names)

4
Al 1n names

Error ... name 'Al' is not defined
"AL" 1n names

True

names + names
['Al', "Jane’, 'J1ll"', 'Mark', 'Al', 'Jane', "Jill"', 'Mark']

Accessing List Elements

Names "Al" "Jane" "Ji"" "MC"'k" |iSt elements
0] 2 3 Indices
names|[0] names|[3]
"Al’ 'Mark'

names[len(names) -1]
'Mark'

names[4]
Traceback (most recent call last):
File "<pyshell#8>", line 1, in <module>
names[4]
IndexError: list index out of range

Slicing Lists

names list elements
0 | 2 3 indices
names[1:3] |
[IJanel, |Jl'L'L|] <€ slice
Start

names[0:4:2]
[‘AL", 'Jill'] Step < incremental slice

End

Slicing Lists

names list elements

0 1 2 3 indices

names, names[0:4],
names[0,4,1] ["Al', 'Jane’, 'Jill', 'Mark']

names[1:3] ['Jane', 'Jill']
names|[1:4] ['Jane', 'Jill', 'Mark']

names[0:4:2] ['Al', 'Jill']
names|[:3] ['"ALl', 'Jane', 'Jill']

names|[:2] ['Al', 'Jane']
names[2:] ['Jill', 'Mark']

Operation
x in s
¥ not 1n =
= + t
3 *n, n *¥ s
s [1]
=[1:]]
a[i:]:k]
len(s)
min (s)
max (s)
s.index (i)

s .count (1)

Result
True If an item of 5is equal to x, else False
False If an item of sis equal to x, else Trus
the concatenation of s and ¢
n shallow copies of s concatenated
ith item of s, origin 0
sliceof sfromitoj
slice of s from i to j with step &

length of s

smallest item of 5

largest item of s

index of the first occurence of 1in

total number of occurences of fin s

source: docs.python.org

Moditying Lists

names = ['Al', 'Jane', 'Jill', 'Mark']

names[1l] = "Kate"

Nnames a=1[1, 2, 3]
['Al', 'Kate', 'Jill', 'Mark'] a[0:0] = [-2, -1, 0]

d
[-2, -1, 0, 1, 2, 3]

names[1:3] = ["Me", "You"] a = [1, 2, 3]

names al0:1] = [-2, -1, O]
['Al', 'Me', 'You', 'Mark'] e

names[1:3] — ["AA", "BB", "CC", ||DD||]
['Al', 'AA', 'BB', 'CC', 'DD', 'Mark']

The list grew in length, we could make it shrink as well.

Operation

s[1] = =

=[1:7] = t

del s[1:73]

s[1:7:k] = t

del =[1:7:k]

s .append (x)
g.extend (x)
g.count {x)

=.index(x[, 1[, J11)

s.insert {1, =)

s.pop([i])

5.remove (i)

z.reverse ()

s.sort ([key[, reverse]])

Result
item / of 8 is replaced by x

slice of s from i to j Is replaced by the
contents of the iterable t

same as s[i:9] = []

the elements of s[i:5:%] are replaced by
those of t

removes the elements of =[1:5:&] from
the list

Ssame as =[len(=) :len({=)] = [x]
SsaMme as =[len(=s) :len{s)] = =
return number of i's for which s[1i] == x

return smallest k such that s[x] == = and
i <=k <]

same as s[1:1] = [x]

same as x = s[1]; del =[1]; return
x

same as del s[s.index(x)]
reverses the items of s in place

sort the items of s in place
source: docs.python.org

west east
West — [IICAII’ IIORII]
east — [||NY||’ IIMAII] /
all = [west, east] N yd
all
all

[["CA", "OR"I,["NY", "MA"]]

2 paths to the list containing state names in the West Coast.
« One through the variable west, >>> west

« The other through the variable all. >>> all[0]

This is called aliasing.

Mutabillity Requires Caution

west eqst
all N | /
WeSt — [HCAH’ uORu]
east = ["NY", "MA"] All variables that are bound to the
all = [west, east] modified object change in value.
west.append("WA")
all

[['CA", 'OR', '"WA'], ['NY', 'MA']]

Creating Copies

west eqst

all west eqast

west = ["CA", "OR"]

east = ["NY", "MA"]

all2 = [west[:], east[:]]
all2

[["CA", "OR"I, ["NY", "MA"]]

No matter how | modify west,
alll will not see it.

HCA" HORH HNYH HMAH

all2

Creates a shallow copy.

If list items were mutable objects,

as opposed to strings as we have here,
we would have needed something more.
Don’t worry about it now.

What Happens In the Memory<¢

west = ["CA", "OR"]

east = ["NY", "MA"]

all = [west, east]

Sl o= westle o easti 1 this 1s more like
a'L'Lz —_ [[IICAII’ IIORII] , [IINYII’ IIMAII]]

print(id(all), all)
48231728 [["CA", "OR"], ["NY", "MA"]]

print(id(all2), all2)
48221880 [["CA", "OR"], ["NY", "MA"]]

lterating over Lists

def print colors(colors):
for index in range(0, len(colors)):

print(colors[index])

>>> print colors(["red", "blue", "green"])
red

blue
green

Alternative Version

def print colors(colors):
for ¢ 1n colors:
print(c)

Compare with previous version

def print colors(colors):
for index in range(0, len(colors)):
print(colors[index])

Python binds ¢ to the first item in colors,
then execute the statement in the loop body,
binds ¢ to the next item in the list colors etc.

Finding the max using Python

def findmax(lst):

max S O_fa r = lst [@] # set 1st item as the maximum found
for 1 in range(l,len(lst)): # Check all following items

1t -LSt[l] = max_so_far: # if you find a bigger value

update the maximum
max so far = lst[1i]

After checking all values

return max_so_far # return the maximum found

20

Alternative Version

def findmax(lst):

max_so_fa r = lst[0O] # initialize the maximum

for item in LUst: <« “For each item in the list...”

1f item > max_so_fa r # if it is bigger then maximum

max_so_far = item # keep it as the new maximum

return max so far
return the maximum after checkin all

The list data type (ordered and dynamic collections of
data)

O Creating lists
O Accessing elements
O Modifying lists

Iterating over lists

YV OF
fRATOSTHINSS

A 2000 year old algorithm
(procedure) for generating a table
of prime numbers.

2,3,5 7,11,13, 17,23, 29,31, ...

What Is a “Sieve” or “Sifter”e

Separates stuff you want from stuff you don't:

We want to separate prime numbers.

24

An integer is “prime” if it is not divisible by any smaller
integers except 1.

10 is not prime because 10=2 x5

11 is prime

12is not prime because 12=2x6=2%x2x3

13 is prime

15 is not prime because 15=3 x §

25

Testing Divisibility in Python

x 1s “divisible by" y if the remainder is 0 when we
divide x by y

15 is divisible by 3 and 5, but not by 2:

15 % 3
0

15 % 5
0

15 % 2

26

The Sieve of Eratosthenes
@

Start with a table of integers
from 2 to N.

Cross out all the entries that
are divisible by the primes
known so far.

The first value remaining is
the next prime.

C .

27

FInding Primes Between 2 and 50

2 3 405 6 8 910
1121314151617 1819 20
1222324252627 28 29 30
1 323334 3536 37 38 39 40
1 42 43 44 45 46 47 48 49 50

/
/

AON—

2 is the first prime

FInding Primes Between 2 and 50

2 3 S / 7
13 415 617 1219
23 0425 0627 2029
33 435 5637 20 39
43 4445 16 47 A0 49

meN T

Filter out everything divisible by 2.
Now we see that 3 is the next prime.

FInding Primes Between 2 and 50

2 3 5 /

11 13 17 1519
23 425 29

31 35 637

41 42 43 47 25 49

Filter out everything divisible by 3.
Now we see that 5is the next prime.

FInding Primes Between 2 and 50

2 3 5 7

11 13 17 1519
23 29

31 37

41 42 43 47 25 49

Filter out everything divisible by 5.
Now we see that 7 is the next prime.

FInding Primes Between 2 and 50

2 3 5 7

11 13 17 1519
23 29

31 37

41 42 43 47

Filter out everything divisible by 7.
Now we see that 11 is the next prime.

FInding Primes Between 2 and 50

2 3 5 7

11 13 17 1519
23 29

31 37

41 42 43 47

Since 11 x 11> 50, all remaining numbers
must be primes. Whye

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order.
(Assume n>1.)

2. Create an empty list primes.

3. For each element in numlist

a. If elementis not marked, copy it to the end of primes.

b. Mark every number that is a multiple of the most recently
discovered prime number.

Output: The list of all prime numbers less than or equal fo n

34

Automating the Sieve

numlist primes
2 3 4 5
6 7 8 9
1011 12 13

Use two lists: candidates, and confirmed primes.

Steps 1 and 2

numlist primes
2 3 4 5
6 7 8 9
1011 12 13

Step 3a

numlist primes

3 4
/ 3
1 12

)2

2 S
6 9
101 3

12 1

Append the current number in numlist fo the end of primes.

Step 3b

numlist primes

3 A 5
/7 8 9
1 A2 13

2
4
1O

Cross out all the multiples of the |ast numlber in primes.

ITerations

numlist primes

2 A5 2) 3
& 7 8 9
1011 A2 13

Append the current number in numlist to the end of primes.

ITerations

numlist primes
238 & 5 2 3
& 7 8 9
1011 A2 13

Cross out all the multiples of the last number in primes.

Iferations

numlist primes
23 A4 15 2m3) 5
& 7 8B 5
1011 A2 13

Append the current number in numlist to the end of primes.

lTerations

numlist primes
238 45 2 3 5
& 7 8 9
1011 A2 13

Cross out all the multiples of the last number in primes.

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order.
(Assume n>1.)

2. Create an empty list primes.

3. For each element in numlist

a. If elementis not marked, copy it to the end of primes.

b. Mark every number that is a multiple of the most recently
discovered prime number.

Output: The list of all prime numbers less than or equal fo n

43

Implementation Decisions

How to implement numlist and primes?

O For numlist we will use a list in which crossed out elements are
marked with the special value None. For example,

[None, 3, None, 5, None, 7, None]

Use a helper function for step 3.b. We will call it
Sift.

Relational Operators

If we want to compare two integers to determine their relationship,
we can use these relational operators:

< lessthan <= less than or equal to
> greater than >= greater than or equal o
== equalto |= not equal to

We can also write compound expressions using the Boolean
operators and and or.

Xx>=1and x <=1

45

Sifting: Removing Multiples of a Number

def sift(lst, k):
marks multiples of k with None
1 =20
while 1 < len(lst):
if (lst[1]!=None) and Llst[1]%k ==
Lst[1] = None
1 =1+1
return Llst

Filters out the multiples of the number k from list by marking
them with the special value None (greyed out ones).

Sifting: Removing Multiples of a Number

Alternative version

def sift2(lst,k):
i1 =20
while 1 < len(lst):
if lst[1i] % k ==
lst.remove(lst[i])
else:
1i=1+1
return Llst

Filters out the multiples of the number k from list

by modifying the list. Be careful in handling indices.

A Working Sieve

def sieve(n):
numlist = list(range(2,n+1))
primes = []
for 1 in range(0, len(numlist)):
if numlist[i] != None:
primes.append(numlist[i])
sift(numlist, numlist[i])

return prime
We could have use

primes|len(primes)-1] instead.

Helper function that we defined before

Observation for a Better Sieve

We stopped at 11 because all the
remaining entries must be prime since

11 x 11> 50.
2 3 5 7
11 13 17 1= 19
23 29
31 37

41 '~ 43 47

A Better Sieve

def sieve(n):
numlist = list(range(2, n + 1))
primes = []

1 =1
while 1 <= math.sqrt(n):
1f numlist[i] !'= None:

primes.append(numlist[i])
sift(numlist, numlist[i])
1=1+1

return primes + numlist

Algorithm-Inspired Sculpture

The Sieve of Erafosthenes,
1999 sculpture by Mark di
Suvero. Displayed at
Stanford University.

