Algorithmic Thinking:

Loops and Conditionals

A control flow structure: for loop

range (n)
range (start, end)
range (start, end, step)

Assignments that modify variables:
X =X t+y

lteration with for loops

def testl(): What determines how many

for i in range(1,6): times “Woof" is printed is the
print ("Woof") number of elements in the
range.

>>> testl ()

Woof Any expression that gives 5

Woof elements in the range would

Woof give the same output.

Woof

Woof For example,

range(5), range(0,5), ...

lteration with for loops

def test2():
for i in range(1l,6):
print(i, end='-")

>>> test2 ()
1-2-3-4-5-

range (5)
range (0, 5)
range (1, 6)

range(1l, 10,
range (2, 10,

range (10, 1,
range (10, 2,

2)
2)

-1)
-4)

>2
>2
>2

>2
>2

>2
>2

lteration with for loops

def test3():

for 1 in range(1,6): This expression creates a string
print ("Woof" * i) that concatenates i number
of "“Woof''s.

>>> test3 ()

Woof

WoofWoof
WoofWoofWoof
WoofWoofWoofWoof
WoofWoofWoofWoofWoof

This Lecture

The notion of an algorithm

Moving from algorithm to code

Python control structures:
O While loops, conditionals

Algorithms

An algorithm is “a precise rule (or set of rules)
specitying how to solve some problem.”
(thefreedictionary.com)

The study of algorithms is one of the
foundations of computer science.

:44 NSRRI el e -
Mohammed al-Khowarizmi (Gl-khowdaréz" me)
Persian mathematician of the court of Mamun in Baghdad...
the word algorithm is said to have been derived from his name.

Much of the mathematical knowledge of medieval Europe was
derived from Latin franslations of his works. (encyclopedia.com)

An algorithm is like a function

F(X) =y

IN
PUT ALGORITHM >
OUTPUT

Suggestion: use paper and pen before keyboard

Input specification

e Recipes: ingredients, cooking utensils, ...

e Knitting: size of garment, length of yarn, needles ...
e Tax Code: wages, interest, tax withheld, ...

Input specification for computational algorithms:

 What kind of data is required?

e |In what form will this data be received by the
algorithm®e

10

Computation

An algorithm requires clear and precisely stated
steps that express how to perform the
operations to yield the desired results.

Algorithms assume a basic set of primitive
operations that are assumed to be understood

by the executor of the algorithm.
Recipes: beat, stir, blend, bake, ...
Knitting: casting on, slip loop, draw yarn through, ...
Tax code: deduct, look up, check box, ...
Computational: add, set, modulo, output, ...

11

Qutput

Output specification

Recipes. number of servings, how 1o serve
Knitting: final garment shape

e Tax Code: tax due or tax refund, where to pay

Output specification for computational algorithmes:

What results are required?

How should these results be reported?

What happens if no results can be computed due to
an error in the inpute What do we output to indicate
thise

12

s this a “good”™ algorithm?

Input: slices of bread, jar of peanut butter, jar of jelly

1. Pick up some bread.

2. Put peanut butter on the bread.

3. Pick up some more bread.

4. Open the jar of jelly.

5. Spread the jelly on the bread.

6. Put the bread together to make your sandwich.

Outpute

13

What makes a “good” algorithm?

A good algorithm should produce the
correct outputs for any set of legal inputs.

A good algorithm should execute efficiently
with the fewest number of steps as possible.

A good algorithm should be designed in
such a way that others will be able to
understand it and modify it to specify
solutions to additional problems.

An epidemic (covered last week)

def compute sick (numOfDays) :
#computes total sick after n days
newly sick 1 #initially 1 sick person

total_sick 1

for day in range (2, numOfDays + 1):

#each iteration represents one day
newly sick = newly sick * 2
total sick total sick + newly sick

return total_sick

Each newly infected person infects 2 people the next day.
The function returns the number of sick people after n days.

15

Variation on the Epidemic Example

Let us write a function that
O Inputs the size of the population

O Ouiputs the number of days left before all the population
dies out

How can we do that using iteration (loops)?
Keep track of the number of sick people.

But do we know how many times we should loop?¢

Recall the Epidemic Example

def days left (population):
#computes the number of days until extinction
days =1
newly sick = 1
total sick =1
while total sick < population:
#each iteration represents one day
newly sick = newly sick * 2
total sick = total sick + newly sick
days = days + 1
print (days, " days for the population to die off")
return days

while [OOpP

Format:

while condition:
loop body

\

one or more instructions
to be repeated

After the loop condition becomes false
during the loop body, the loop body
still runs to completion (before its check
before the next turn) and exit the loop
and go on with the next step.

condition

loop body

18

Recall the Epidemic Example

def days left (population):

#computes the number of days until extinction

days = 1
newly sick = 1 -
total sick = 1 Loop condition

while [total sick < p0pulati0n2“’—__———————_;;oukibe

#each iteration represents one day
newly sick = newly sick * 2
total sick |= total sick + newly sick
days = days + 1
print (days, " days for the population to die off")
return days

changing so
that loop wiill
end at a point

19

While Loop Examples

What is the outpute How about this¢

i=1 i1 =20

while 1 < 6: while 1 < 5:
print (i, end=' ") i=1i4+1
i=1+1 print (i , end="

print ('\n After :', 1)

‘“An’ means new line

What is the value of i when we exit the loop?

print ('\n After :

4

")

1)

20

While Loop Examples

i=1
while i < 6: .
print(i, end=' ') R
i=1i+1
print('\n', 'After :',i) After 6
print('---——------——-- y; memmmmmmmm———
t =0 12345
while 1 < 5 After .
i=1i+1
print(i , end=' ") >>>

print('\n After :', i)

21

While vs. For Loops

Prints first 10 positive intfegers # Prints first 10 positive infegers
i =1 for 1 in range(1l,11):
while 1 < 11: print (i)

print (1)

i =1+ 1

22

When 1o use for or while loops

If you know in advance how many times you want to run
a loop use a for loop.

When you don’t know the number of repetition needed,
use a while loop.

A Simple Algorithm

Input numerical between 0 and 100 and
Output “Pass” or “Fail”

Algorithm:
1.1f >= 60 Exactly one of the steps 1 or 2
a. Set to “Pass” is executed, but step 3 and
b. Print “Pass” step 4 are always executed.
2. Otherwise,
a. Set to “Fail”
b. Print “Fail”

3. Print “See you in class”
4. Return

Coding the Grader in Python

def grader (score) :

Algorithm: .
1.If >= 60 if score >= 60:
a. Set to “Pass” gr?de — "pass"
L. Print “ Pass” print ("!!!Pass")
2. Otherwise, else: |
a. Set to “Fail” gréde = "Fal}"
b. Print “Fai” print ("!!!Fail"™)

C . ’ rint ("See you 1n class")
3. Print “See you in class = Y

return grade
4. Return J

Control Flow

true false
score >= 60
set grade to “Pass” set grade to “Fail”
print “Pass” print “ Fail”

print(“See you in class”)
return grade

26

FLOW CHART: if statement

Formart:
if condition: ¢ false
statement_list condition —
¢ true
statements

b

FLOW CHART: 1f/else statement

. true ¢ false
Format: — condition
| j
statement _list] statement _list2
if condition: T
statement_listl
else:

statement_list2

28

Grader for Letter Grades

true

false

score >= 90

set grade to “A”
print “you got an A”

o eoemw
false

true

set grade to “B”
print “you got a B”

set grade to “C”
print “you got a C”

false
score >= 70

set grade to “D or lower”
print “your grade is less than C”

29

Nested If statements

def grader2 (score):
if score >= 90:
grade = "A"
print ("You got an A")
else: # score less than 90
if score >= 80:
grade = "B"
print ("You got a B")
else: # score less than 80
if score >= 70:
grade = "C"
print ("You got a C")
else: #score less than 70
grade = "D or lower"
print ("Your grade 1is less than C")
return grade

Equivalently

def grader3 (score): if score >= 90:
. _ . grade = "A"
1f score >— 90 . pr:i_nt("You gOt an P_\"}
grade = "ApAV else: # score less than 90
) if score >= 80:
print ("You got an A") grade = "B"
. print ("You got a B")
ellf Score >= 80: else: # score less than 80
if score >= 70:

grade o "B"
print ("You got a B")
elif score >= 70:

grade = "C"

print ("You got a C")
else:

grade = "D or lower"

print ("Your grade 1s less than C")
return grade

Flow chart:

if/elif/else statement

v

Format: true false
' f condition] —
if conditionl: :
statement list1 statement list]
elif condition2 : ¢ ol
: true alSe
statement_list2 — condition? _
else:
, \ 4
statement_list3 statement_list2
v
statement list3

' 7

32

Example: Finding the maximum

How do we find the maximum in a sequence of infegers
shown to us one at a timee

299

What's the maximum?

This slide is added just for the lecture notes in PDF.
Same with the previous slide which animates the list of numbers

Example: Finding the maximum

How do we find the maximum in a sequence of infegers
shown to us one at a timee

=175

H203

H109

H158

H138

146 H265 {152 {222

H307 H299 |»

What's the maximum?

34

Example: Finding the maximum

Input: a non-empty list of integers.

1. Set max_so _far to the first number in list.
2. For each numbernin list
a. If nis greater than max_so_f} Loop
then seft max_so far fo n.

Output: max_so _far as the maximum of the list.

35

Until Now

Notion of an algorithm:
O Kinds of instructions needed to express algorithms
O What makes an algorithm a good one

Instructions for specifying control flow (for loop, while
loop, if/then/else)

O Flow charts to express control flow in a language-
independent way

O Coding these control flow structures in Python

NEXT > Lists!

> Organizing/Processing lots of data.

36

Representing Lists in Python

We will use a list to represent a collection of
data values.

scores = [78, 93, &0, 68, 100, 94, &5]
colors =1 ‘red , ‘green’ , ‘blue’ |
mixed = [‘purple’ , 100, 90.5]

A list is an ordered sequence of values and
may contain values of any data type.

In Python lists may be heterogeneous
(may contain items of different data types).

37

Some List Operations

Indexing (think of subscripts in a sequence)
Length (number of items contained in the list)
Slicing

Membership check

Concatenation

38

Some List Operations

nOmeS — [|IA|II' IIJonell' IlJi”ll' llMorkll]

len(names)
4

Al in names
Error ... name 'Al'is not defined

"Al" In names
True

names + names
[Al', "Jane’, Jill', '"Mark’, 'Al', "Jane’, Jill', '"Mark’]

39

Accessing List Elements

names "Al" "Jane" "Jill" "Mark" list elements
O] 2 3 indices
names|[0] names|[3]
‘Al '‘Mark'

names[len(names)-1]
'‘Mark’

names(4]
Traceback (most recent call last):
File "<pyshell#8>", line 1, in <module>
names [4]
IndexError: list index out of range

Slicing Lists

Nnames
0 1 2
names|[1:3]
[Jane’, Jill']
Start
names[0:4:2]
[*Al', "Jill']
Step

End

list elements

Indices

slice

incremental slice

Slicing Lists

names list elements

0 1 2 3 indices

names, names[0:4], names[0,4,1]
They all refer to ['Al', 'Jane', 'Jill'‘, ‘Mark']

names|[1l:3] ['Jane', 'Jill']
names|[1l:4] ['Jane', 'Jill', ‘Mark']
names[0:4:2] [‘Al', 'Jill']

names|[:3] ['Al', 'Jane', 'Jill}']
names|[:2] ['"Al', 'Jane']

names|[2:] ['Jill', 'Mark']

Operation
x in s
¥ not 1n =
= + t
3 *n, n *¥ s
s [1]
=[1:]]
a[i:]:k]
len(s)
min (s)
max (s)
s.index (i)

s .count (1)

Result
True If an item of 5is equal to x, else False
False If an item of sis equal to x, else Trus
the concatenation of s and ¢
n shallow copies of s concatenated
ith item of s, origin 0
sliceof sfromitoj
slice of s from i to j with step &
length of s
smallest item of 5
largest item of s
index of the first occurence of 1in

total number of occurences of fin s

source: docs.python.org

43

Modifying Lists

names = ['Al', 'Jane', 'Jill', 'Mark']
names[1l] = "Kate"
names a = [1, 2, 3]
['"Al', 'Kate', 'Jill', 'Mark'] a[0:0] = [-2,
a
[-2, -1, 0, 1, 2,
names[1:3] = ["Me", "You"] a = [1, 2, 3]
names al0:1] = [-2,
['Al', 'Me', 'You', 'Mark'] a
(-2, -1, 0, 2, 3]
names[1:3] = ["AA", "BBR", "CC", "DD"]

['Al', 'AA', 'BB', 'CC', 'DD', 'Mark']

The 1list grew in length, we could make it shrink as well.

44

Operation

s[1] = =

=[1:7] = t

del s[1:73]

s[1:7:k] = t

del =[1:7:k]

s .append (x)
g.extend (x)
g.count {x)

=.index(x[, 1[, J11)

s.insert {1, =)

s.pop([i])

5.remove (i)

z.reverse ()

s.sort ([key[, reverse]])

Result
item / of 8 is replaced by x

slice of s from i to j Is replaced by the
contents of the iterable t

same as s[i:9] = []

the elements of s[i:5:%] are replaced by
those of t

removes the elements of =[1:5:&] from
the list

Ssame as =[len(=) :len({=)] = [x]
SsaMme as =[len(=s) :len{s)] = =
return number of i's for which s[1i] == x

return smallest k such that s[x] == = and
i <=k <]

same as s[1:1] = [x]

same as x = s[1]; del =[1]; return
x

same as del s[s.index(x)]
reverses the items of s in place

sort the items of s in place
source: docs.python.org

45

Tomorrow

We will continue Lists and algorithms

