
15-110 Hw6 - Language Modeling

Hw6 and its checks are organized differently from the other assignments. If you haven't
already done so, you should read the Hw6 General Guide to understand how this
assignment works.

Project Description

In this project, you will build and test your own language model based on the works of
two famous folklore and fairytale authors, Andersen and the Grimm Brothers. A
language model is a machine learning model that holds information about how
common certain words are in a specific author's books. You'll use the language model
you create to generate text that is similar to the texts written by these two authors, and
compare how often they used different words and phrases.

In the first week, you will parse the text of the provided corpuses into new formats, to
make generating language models possible. In the second week, you'll implement three
simple language models: a uniform model, a unigram model, and a bigram model. You'll
compute probabilities and generate new text using these models. In the third week,
you'll create visualizations that compare the two texts based on these models.

Click on the following links to read the instructions for each week's assignment:

Check6-1 - due Monday 11/21 at noon EST

Check6-2 - due Friday 12/02 at noon EST

Hw6 - due Friday 12/09 at noon EST



Check6-1 - due Monday 11/21 at noon EST

In the first stage, you will reformat two text corpuses (from Andersen and Grimm) to
build data that you'll use to generate language models. To do this, you will need to write
functions that build the vocabulary of a text, count the number of unigrams (individual
words) that appear, and count the number of bigrams (pairs of words) that appear.

Step 0: Written Assignment [45pts]

In addition to completing the steps described below, there is a short written assignment
on the week's material. You can find the written assignment on the course website.

Step 1: Load Words From Text [10pts]

Write a function loadBook(filename) that takes a filename, opens it, and creates a 2D
list where each row is a sentence in the book and each column is one word or symbol in
that sentence in order. The 2D list is called a corpus of text. The file you are given is
already cleaned - each line is a single sentence, all words are lowercases, and all
punctuation is separated out by spaces. You should read in the file, and for each line,
split it by spaces; then append that list to your list of lists (unless it's empty, in which
case it should be discarded). For example,

"hello and welcome to 15-110 .

we're happy to have you ."

would produce a 2D list

[ ["hello","and","welcome","to","15-110","."],

["we're","happy","to","have","you","."] ]

To test your function, run testLoadBook().

Note: to keep the starter file from becoming too crowded, all the tests have been moved
to the file hw6_language_tests.py, which you can open and read while debugging.
The functions in this file are called at the bottom of hw6_language.py. If you change
the filename of hw6_language.py, you will need to change the filename imported
by hw6_language_tests.py in the first line of the file too.



Step 2: Find Corpus Length [5pts]

Write a function getCorpusLength(corpus) which is given a 2D list of words and
symbols in a text and returns the total number of unigrams (single words or symbols)
that occur in that list. Examples of unigrams include "hello", ",", and "world".

corpus = [ ["hello", "world"],

["hello", "world", "again"] ]

getCorpusLength(corpus) -> 5

In the example from loadBook, getCorpusLength would return 12.

To test your function, run testGetCorpusLength().

Step 3: Build Unigram Vocabulary [5pts]

Given a 2D list corpus, write a function buildVocabulary(corpus) that creates a new
list and iterates through the corpus, adding only words that are not present in the new
list already. In other words, it should return a list of all unique unigrams.

corpus = [ ["hello", "world"],

["hello", "world", "again"] ]

buildVocabulary(corpus) -> ["hello", "world", "again"]

corpus = [ ["hello","and","welcome","to","15-110","."],

["we're","happy","to","have","you","."] ]

buildVocabulary(corpus) -> ["hello", "and", "welcome", "to", "15-110",

".", "we're", "happy", "have", "you"]

To test your function, run testBuildVocabulary().

Step 4: Track the Start Words [5pts]

For the next model, we'll need to keep track of start words; that is, words that start
sentences.

Given a 2D list corpus, write a function makeStartCorpus(corpus) that returns a new
corpus only containing the starting word of each sentence. This corpus should still be a
2D list, but will only have one word per sentence - the first word.



corpus = [ ["hello", "world"],

["hello", "world", "again"] ]

makeStartCorpus(corpus) -> [ ["hello"], ["hello"] ]

corpus = [ ["hello","and","welcome","to","the","program","."],

["we're","happy","to","have","you","."] ]

makeStartCorpus(corpus) -> [ [ "hello" ], [ "we're" ] ]

Step 5: Count Unigrams [5pts]

Now we'll organize the data to later support a unigram model. A unigram model is a
model where each word gets the probability X/N, where X is the number of times that
word appears in the data and N is the total number of words in the data. In other words,
each word’s probability depends on how often that word shows up in the data.

Given a 2D list corpus, write a function countUnigrams(corpus) which returns a
dictionary where the keys are the unigrams in the corpus's vocabulary and the values
are how often each key occurs in the actual corpus (the 2D list).

corpus = [ ["hello", "world"],

["hello", "world", "again"] ]

countUnigrams(corpus) -> { "hello": 2, "world": 2, "again": 1 }

To test this function, run testCountUnigrams().

Step 6: Count Bigrams [10pts]

Our final model will use bigrams instead of unigrams. A bigram is a pair of words that
appear next to each other. Often, looking at the frequency of pairs of words helps us
more accurately predict which word goes next in a sentence, as opposed to only
considering the general frequencies of words.

A bigram model is a model where each pair of words "x y" gets the probability X/N,
where X is the number of times that "x y" appears in the data (in that specific order)
and N is the number of times that "x" appears in the data.

Write a function countBigrams(corpus) that returns a 2D dictionary with the counts of
each unique bigram in the corpus. In order to do this, you will:



● Step 1: Create a new dictionary
● Step 2: Iterate through each sentence of the corpus.
● Step 3: For each sentence, loop through the indexes of the words in that

sentence from 0 to len(sentence)-1 (don't include the last word). Each pair of
words will be sentence[index] and sentence[index+1].

● Step 4: If sentence[index] is not in your main dictionary, add it with an empty
dictionary as the value.

● Step 5: Check if sentence[index+1] is in sentence[index]'s dictionary. If it is
not, add sentence[index+1] as a key with the value 1. If it is in the dictionary,
add 1 to its associated value.

This function should return a dictionary of dictionaries (2D dictionary) representing the
counts of all bigrams of words.

corpus = [ ["hello", "world"],

["hello", "world", "again"] ]

bigramCount = countBigrams(corpus)

bigramCount -> { "hello": { "world": 2 }, "world": { "again": 1 } }

bigramCount["hello"]["world"] -> 2

To test this function, run testCountBigrams().

Step 7: Clean Data - Separate Words [10pts]

You may want to run your code on your own datasets (instead of the datasets we've
provided). To make that possible, you'll first need to clean the data you want to analyze
to fit the needed format.

First, write the function separateWords(line) which takes a line of text (a string) and
returns a list of all the words in the text, with punctuation separated out. However, you
do not want to separate the ' punctuation marks, as they are usually used as
apostrophes and count as part of the words they are in.

line = "Hello and welcome to the program, we're happy to have you!"

separateWords(line) -> ['Hello', 'and', 'welcome', 'to', 'the',

'program', ',', "we're", 'happy', 'to', 'have', 'you', '!']



Importantly, it is possible for a single token to contain multiple punctuation marks. The
following example provides an extreme case of this:

line = '"Wait-no!", she cried.'

separateWords(line) -> ['"', 'Wait', '-', 'no', '!', '"', ',', 'she',

'cried', '.']

To deal with multiple punctuation marks in a single token, loop over every character in
each token. When you encounter a punctuation mark (something in the library variable
string.punctuation that is not '), add all the characters before that punctuation mark
as a word to the result list, then add the punctuation mark as a second word. Keep track
of a 'start' index so that you know where each word prior to the punctuation mark began.
And don't forget to add the last bit of the token to the list of words when the token
doesn't end in a punctuation mark!

To test this function, run testSeparateWords().

Step 8: Clean Data - Compose Text [5pts]

Second, write the function cleanBookData(text) which takes a string containing the
book data you want to analyze and returns a cleaned version of the string. The cleaned
version should have the following changes made:

● All words should be made lowercase
● Every line of text should be broken up into words and punctuation marks (by

calling separateWords on the line of text)
● Every line of text should further be broken up so that each sentence is on its own

line

To break up the sentences, iterate over the tokens in each separated line looking for the
characters ".", "!", and "?", which all end sentences. You can use a similar approach
to separate the sentences as you used to separate punctuation from words.

To turn a list of words back into a string, try using the join method on a delimiter string
of " ". Don't forget to add newlines after each line and strip any extra newlines from the
end!



book = """Hello and welcome to the program, we're happy to have you!

Your first task, writing some code, is easy. Let's start!

Just use the print command with "Hello World" in parentheses."""

cleanBookData(book) ->

"""hello and welcome to the program , we're happy to have you !

your first task , writing some code , is easy .

let's start !

just use the print command with " hello world " in parentheses ."""

To test this function, run testCleanBookData().

Note: if you run these functions on your own real data, you'll probably need to add more
cleaning steps, some automated and some done by hand. For example, if you're using
a book from Project Gutenberg, paragraphs will be broken into lines with empty lines in
between them; you need to combine the paragraphs together to process the data
correctly. Every dataset is unique!

Once you've finished all seven steps, you can test your functions on larger files! Try
printing the variables in runWeek1() to see what you get.

https://www.gutenberg.org/


Check6-2 - due Friday 12/02 at noon EST

In the second stage, you'll actually generate the three language models (uniform,
unigram, and bigram), which will make it possible to identify the most common words in
the vocabularies and generate new text. To do this, you will first need to write functions
that produce probabilities for each word in the corpus.

Before you start this second stage, go to the bottom of the starter file and uncomment
the four test lines associated with Week 2.

Step 0: Written Assignment [45pts]

In addition to completing the steps described below, there is a short written assignment
on the week's material. You can find the written assignment on the course website.

Step 1: Compute Uniform Probabilities [5pts]

Our final language model, the uniform model, is a model where all words get the
probability 1/N, where N is the size of the vocabulary. Since we can compute the list of
all of the words in the corpus using buildVocabulary(corpus), the uniform model can
predict the next word in a text by just randomly choosing one of the words.

Write a function buildUniformProbs(unigrams) which takes a list of unique unigrams
and returns a new list of the same length where 1/len(unigrams) is the value at each
index. Each index of this new list represents the probability that the corresponding index
in unigrams would be chosen at random. Return the list of probabilities.

To test this function, run testBuildUniformProbs().

Step 2: Compute Unigram Probabilities [10pts]

Another way to predict the words in the text is by how frequently they occur. You
computed the counts of all the unigrams last week. Now we will use those counts to
compute the probability of each word being randomly chosen from the whole book.



Write a function buildUnigramProbs(unigrams, unigramCounts, totalCount)

which takes a list of all of the unique words in the book, a dictionary mapping unique
unigrams to counts, and the total count of words in the book, and returns a new list of
the probabilities of each word.

In order to do this, you should make a new empty list, then iterate through the indexes
of the unigram list. Look up the count of the index's corresponding unigram in
unigramCounts, then divide the unigram count by the totalCount and append that
resulting probability to the list.

The probability at each index will be the probability that the word at the same index in
unigrams would be chosen at random from the book. Return the list of probabilities.

To test this function, run testBuildUnigramProbs().

Step 3: Compute Bigram Probabilities [10pts]

Finally, we can also think about how the probability of one word changes based on the
word before it. Think about the word "Happy". The words "birthday" and "Halloween"
probably occur at a much higher rate after "Happy" than after other words.

Write a function buildBigramProbs(unigramCounts, bigramCounts) that takes the
frequencies of single words (unigramCounts) and of pairs of words (bigramCounts)
and returns a new nested dictionary.

Each key of the dictionary is a word in the vocabulary, and each key maps to the bigram
probability dictionary for that word. A single word's bigram probability dictionary is like a
reduced version of the unigram probability results- it keeps track of all the words that
can come after the 'start' word, and the probability for each of them.

As an example, if we're processing the sentence "It is very nice, it is super

cool", our result dictionary would look like this:

{ "it"    : { "words" : ["is"],            "probs" : [1]        },

"is"    : { "words" : ["very", "super"], "probs" : [0.5, 0.5] },

"very"  : { "words" : ["nice"],          "probs" : [1]        },

"nice"  : { "words" : ["it"],            "probs" : [1]        },

"super" : { "words" : ["cool"],          "probs" : [1]        } }



Note that "cool" is not included as a key in the outer dictionary because it is never the
first word in a bigram.

To create this dictionary, follow these steps:

1. Make a new dictionary
2. Iterate through each key (we'll call it prevWord) in bigramCounts

a. note that bigramCounts[prevWord] is a dictionary of all the words that
occurred after the previous word in the book

b. make two new lists, one for the words (keys) in
bigramCounts[prevWord], and one for the probabilities of those words

c. iterate through all of the keys in bigramCounts[prevWord], appending
the word to the word list and the word's probability to the probability list.

i. Note 1: You can determine the probability by dividing the count by
unigramCounts[prevWord], which is the total number of times the
previous word occurred.

ii. Note 2: this isn't 100% accurate, because we might have fewer total
word occurrences in bigramCounts than unigramCounts if
prevWord occurred at the end of a sentence. But this usually only
happens to punctuation, so we'll say this is good enough for now.

d. make a temporary dictionary mapping the string "words" to the word list
and the string "probs" to the list of probabilities.

e. add to the new dictionary (from the outer level) the key prevWord; the
value is the dictionary from part d. In other terms, each previous word
maps to a dictionary containing words and probabilities.

3. Return the new dictionary.

To test this function, run testBuildBigramProbs().

Step 4: Get Most Likely Words [10pts]

Write a function getTopWords(count, words, probs, ignoreList) which takes a
number of words, a list of words, and a list of the corresponding probabilities, plus a list
of words to ignore. It finds the top count words with the highest probabilities, then
returns a dictionary mapping those highest probability words to their probabilities. Only
include words that aren't in the list of words ignoreList.

For example, if you call getTopWords with count set to 10, it will return a dictionary
mapping the top 10 words to their probabilities.



One way to do this is to create an empty dictionary which will hold the known highest
probability words. Then repeatedly search for the highest probability word that is not
already a key in that dictionary and not in ignoreList. Once you've gone through all
the words and found the highest probability word that meets those requirements, add it
to the dictionary. Continue the process until the length of the dictionary is equal to
count.

Note: do not destructively change ignoreList! It will be reused across function calls.

To test this function, run testGetTopWords().

Step 5: Generate Sentences with Unigrams [10pts]

Now we can use the language models to do more interesting things! Write a function
generateTextFromUnigrams(count, words, probs) which takes in the number of
words to generate, the word list, and the corresponding probabilities, and returns a
string generated by concatenating probabilistically-chosen words together.

Use the function choices(words, weights=probs) from the random library to
generate a random word sampled according to the given probability distribution.
choices returns a list containing the word it picked, so you'll need to index into the first
element of that list.

Don't forget to add spaces between words! And return the text once you've added the
number of words specified by count.

To test this function, run testGenerateTextFromUnigrams().

Step 6: Generate Sentences with Bigrams [10pts]

The text generated from the unigram model kind of looks like gibberish, but we can do
better. Write the function generateTextFromBigrams(count, startWords,

startWordProbs, bigramProbs) which takes in the number of words to generate, the
start word list, the start word probabilities, and the bigram probabilities dictionary, and
outputs a string of count words generated probabilistically.

In order to generate words, we follow one of two cases:



● First, if nothing has been added to the string yet, or the last word added was a
period, exclamation mark, or question mark (indicating the end of a sentence),
use the choices function with startWords and startWordProbs to generate a
new word and add it to the text.

● Otherwise, look up the last word generated in the bigramProbs dictionary. Use
the "words" and "probs" lists in the dictionary as parameters to choices, then
add the returned word onto the text you've generated so far.

Don't forget to include spaces between words! And return the text once you've added
the number of words specified by count.

To test this function, run testGenerateTextFromBigrams().

Once you've finished all six steps, you can test your functions on larger files! Try
running runWeek2(), and observe the most frequent words and the text produced by
your functions (which is based on text from the Grimm and Andersen files combined).



Hw6 - due Friday 12/09 at noon EST

In the final stage, you will use matplotlib and the functions you wrote for the earlier
stages to generate graphs that compare and contrast the different authors.

Before you start this last stage, go to the bottom of the starter file and uncomment the
two test lines associated with Week 3.

Step 0-A: Complete Check6-1 [20pts]

If you got a perfect score on Check6-1 (the project part), congratulations; this step is
already done! Go to the next step.

Otherwise, go back to your Gradescope feedback on Check6-1 and use it to update
your Check6-1 code. This is your chance to implement any features you might have
missed before, and fix any code that isn't working.

Step 0-B: Complete Check6-2 [20pts]

If you got a perfect score on Check6-2 (the project part), congratulations; this step is
already done! Go to the next step.

Otherwise, go back to your Gradescope feedback on Check6-2 and use it to update
your Check6-2 code. This is your chance to implement any features you might have
missed before, and fix any code that isn't working.

Step 1: Install matplotlib and numpy [0pts]

In order to use the matplotlib library, you will need to install it on your machine. If you do
not have a personal computer, note that the cluster machines on Gates 5 should have
matplotlib installed already.

To install matplotlib and one of its dependencies, numpy, we recommend that you use
the 'Manage Packages' feature in Thonny. This tool will manage the installation process
for you, which is much easier than trying to install a module manually.



Once you're in the 'Manage Packages' prompt, search for numpy, click on the link titled
numpy, then click on 'Install'. Repeat the process with the search term matplotlib.

If you're using a non-Thonny IDE, you'll need to use the pip command instead. Open
your computer's terminal and run the following commands:

pip install numpy

pip install matplotlib

If an error message occurs, try googling it to find a solution. TAs can also help debug
installation errors via Piazza or in office hours.

You can test whether the modules are correctly installed by running the following
commands in your interpreter. If they do not give you an error, you're good to go!

import numpy

import matplotlib

Step 2: Review Provided Code [0pts]

Drawing graphs with matplotlib requires a lot of setup code, and we want you to draw
quite a few graphs, so we've provided a few functions for you to use, to simplify things.
You will write some functions that call the functions we've provided.

You should definitely know what each of the following functions do, and we recommend
that you look over their code at the bottom of the file quickly, to get a sense of how they
work.

● barPlot: generates a bar chart from a dictionary. The x values are the keys in the
dictionary; the y values are the key's values.

● sideBySideBarPlots: generates two bar charts side-by-side, for easy
comparison. The x values are the values in the xValues list, and the y values for
the two plots are the values in the values1 and values2 lists.

● scatterPlot: generates a scatter plot with a line marking where x = y. The x
values are the values in xs, and the y values are the values in ys.



Step 3: Graph the Top 50 Words [10pts]

Write a function graphTop50Words(corpus) which takes as input a corpus, uses the
functions from previous weeks to compute the unigrams and the unigram probabilities,
and then computes the top 50 most frequent words according to the probabilities (using
getTopWords and the global ignore list defined above to eliminate common words with
no meaning).

Then, using the most common 50 words and their probabilities, call the barPlot

function with a good title to display the words.

To test this function, run runWeek3() and check the first graph that is generated. The
first word should occur a lot more than the rest, and then there should be a downwards
slope.

Step 4: Graph the Top Starting Words [10pts]

Write a function graphTopStartWords(corpus) which takes as input a corpus and
uses the functions from previous weeks to compute the start words, find the start word
probabilities, then computes the top 50 most frequent start words according to the
probabilities (using getTopWords and the global ignore list defined above to eliminate
common words with no meaning).

Then, using the most common start words and their probabilities, call the barPlot

function with a good title to display the words.

To test this function, run runWeek3() and check the second graph that is generated.
The first three words should show a probability above 2%; the rest should slope
downwards from there.

Step 5: Graph the Top Bigrams [10pts]

Write a function graphTopNextWords(corpus, word) which takes a corpus and word
and graphs the top 10 words that appear after that word in the corpus, not counting
words in the global ignore list.

Hint: use buildBigramProbs to get all possible next words after word, and
getTopWords to narrow them down to the top 10.



To test this function, run runWeek3() and check the third, fourth, fifth, and sixth graphs
that are generated. The third and fifth graphs represent bigrams collected from the
Grimm text; the fourth and sixth represent bigrams from Andersen. Try comparing them
to find similarities and differences!

Step 6: Compare Probabilities Across Two Books [30pts]

As the final step of the project, we'll compare the probabilities of the most common
words in two books with two different approaches - a side-by-side bar chart, and a
scatterplot.

First, write a function setupChartData(corpus1, corpus2, topWordCount) which
takes two corpuses (corpora) and a number of top-words to count. It should find the top
n unigrams in corpus1 (ignoring words in the ignore list), and the top n unigrams in
corpus2 (again ignoring words in the ignore list). Combine these lists together to make
one top-words list. Note that some words may appear in both, and should not be
repeated. For example, if topWordCount was set to 50, the combined list could have
anywhere from 50 (all overlap) to 100 (no overlap) words.

Then find the probabilities of all the top words in corpus1, and put them in a list. You
can do this by finding the index of the word in the main unigrams list, then indexing into
that location in the unigram probability list. Make another list of probabilities in corpus2.
If a word does not occur in a corpus, it should be assigned the probability 0.

When you've created the three lists - the top words and the two probability lists - return
all three by using a dictionary. This dictionary should map the key "topWords" to the
top-words list, the key "corpus1Probs" to the corpus1 probabilities, and the key
"corpus2Probs" to the corpus2 probabilities. We'll use this data to draw charts in a
moment.

To test this function, run testSetupChartData(). This is called for you in runWeek3().

Now we can finally draw the charts! write the function
graphTopWordsSideBySide(corpus1, name1, corpus2, name2, numWords,

title) which takes two corpuses (corpora) and their names, the number of words to
graph, and a title. Call setupChartData on the corpora, looking for the top numWords

words, to acquire the necessary data. Then call sideBySideBarPlots to show the
differences in probabilities across those top unigrams. Use name1 and name2 as the
category names, and the provided title.



Finally, write a function graphTopWordsInScatterplot(corpus1, corpus2,

numWords, title) which takes two corpuses (corpora). It should also call
setupChartData on the provided values to gather the probability data for the numWords

top words. Once you've produced the probability lists, use the scatterPlot function to
show the probabilities of corpus1 on the x axis and corpus2 on the y axis. Again, make
sure to include the title that is provided as a parameter.

Note: when calling scatterPlot, the parameters x, y, and labels must be lists.

You can test these final two functions by running runWeek3() and checking the final two
charts that are generated. In particular, for the side-by-side barplot, make sure it has a y
range from 0 to 0.0175, and that one of the words (greda) only has a bar for Andersen,
not for Grimm. For the scatterplot, the word 'he' should be separated from the others a
bit, and in the main cluster the word 'i' should be above the x=y line, while 'she' is below
it (Andersen used 'I' more often; Grimm used 'she' more often).

Now you're done! Enjoy looking through the charts and models you've made to find
interesting features of the books you've analyzed.

If you want to analyze more books beyond what we've provided, you can do that too!
Search for the text of the book you want online, then download it into a .txt file with _raw

at the end of the name, and put that file in the data folder. Then run clean_file.py.
This will generate a new version of the file with _clean at the end, which you can use
with your own code!


