
15-110 Check3 - Written Portion

Name:

AndrewID:

Complete the following problems in the fillable PDF, or print out the PDF, write your
answers by hand, and scan the results. Also complete the programming problems in the
starter file check3.py from the course website.

When you are finished, upload your check3.pdf to Check3 - Written on Gradescope,
and upload your check3.py file to Check3 - Programming on Gradescope. Make sure
to check the autograder feedback after you submit!

Written Problems
#1 - Tracing Lists - 10pts
#2 - Aliasing and Mutability - 25pts
#3 - Base Cases and Recursive Cases - 20pts

Programming Problems
#1 - sumAnglesAsDegrees(angles) - 10pts
#2 - Destructive and Non-Destructive Functions - 20pts
#3 - recursiveStringToList(s) - 15pts



Written Problems

#1 - Tracing Lists - 10pts
Can attempt after Lists and Methods lecture

Trace the code below, then fill in the table with what it prints (one row per line).

You might not need to use all of the rows.



#2 - Aliasing and Mutability - 25pts
Can attempt after References and Memory lecture

The following code creates and modifies lists. Determine each list’s values after the
code has run.

Variable List Values

a

b

c

d

Select all of the pairs of lists that are aliased at the end of the code.

☐ a and b

☐ a and c

☐ a and d

☐ b and c

☐ b and d

☐ c and d

☐ None of the lists are aliased



#3 - Base Cases and Recursive Cases - 20pts
Can attempt after Recursion lecture

Assume you want to write a function recursiveSum that takes a positive integer, n, and
recursively computes the sum from one to n.

For example, the result when calling the function on n=5 is 5+4+3+2+1 = 15.

What condition do you need to check for your base case?

What do you return in the base case?

What is the recursive call on a smaller problem in the recursive case?

How do you use the recursive call's result to solve the whole problem for n in the
recursive case?



Programming Problems
For each of these problems (unless otherwise specified), write the needed code directly
in the Python file in the corresponding function definition.

All programming problems may also be checked by running 'Run current script' on the
starter file, which calls the function testAll() to run test cases on all programs.

#1 - sumAnglesAsDegrees(angles) - 10pts
Can attempt after Lists and Methods lecture

When analyzing data, you need to convert the data from one format to another before
processing it. For example, you might have a dataset where angles were measured in
radians, yet you want to find the sum of the angles in degrees.

Write the function sumAnglesAsDegrees(angles) which takes a list of angles in
radians (floats) and returns the sum of those angles in degrees (an integer). To do this,
you will need to loop over the angles and change each angle from radians to degrees
before adding it to the sum. You can do this with the library function math.degrees().
Make sure to round the final result to get an integer answer.

For example, sumAnglesAsDegrees([math.pi/6, math.pi/4, math.pi]) should
convert the radians to approximately 30.0, 45.0, and 180.0, then return 255.



#2 - Destructive and Non-Destructive Functions - 20pts
Can attempt after References and Memory lecture

First, write a non-destructive function findMultiples(lst, num) that takes a list of
integers and a positive integer and returns a new list containing only the elements of
lst that are also multiples of num.

For example, findMultiples([11, 20, 35, 43, 50, 66], 5) returns [20, 35,

50], and findMultiples([17, -77, 34, -95, 88], 11) returns [-77, 88].

Your findMultiples function must not modify the original list in any way.

Second, write a destructive function removeNonMultiples(lst, num) that does the
same thing, but destructively. This function takes a list of integers and a positive integer
and destructively removes the elements that are not multiples of num in the provided list.

In other words, at the end of the function call lst should contain only the original
elements that are multiples of num. This function should return None instead of the list;
we'll test it by checking whether the input list was modified properly.

For example, removeNonMultiples([1, 2, 3, 4, 5, 6], 3) returns None and
modifies the list to be [3, 6], and removeNonMultiples([4, 5, 70, -3, 10], 2)

returns None and modifies the list to be [4, 70, 10].

Hint: this is tricky because lst will change as the function runs. You should use an
appropriate loop to account for this - see the 'Destructive Looping' portion of the course
slides!



#3 - recursiveStringToList(s) - 15pts
Can attempt after Recursion lecture

Write a function recursiveStringToList(s) that takes a string as input and returns a
list which contains all the characters that were in s, but as separate items in the list. This
function must use recursion in a meaningful way; a solution that uses a loop or the
built-in split function will receive no points.

For example, recursiveStringToList("hello") should return ["h", "e", "l",

"l", "o"].

Hint: start from the framework in the Recursion slides! What's your base case, and how
do you make the problem smaller? What should the function return, and how can you
combine it with the leftover part?

Another Hint: make sure to keep your types straight! The parameter should always be
a string, and the returned value should always be a list.


	List Valuesa: 
	List Valuesb: 
	List Valuesc: 
	List Valuesd: 
	a and b: Off
	a and c: Off
	a and d: Off
	b and c: Off
	b and d: Off
	c and d: Off
	None of the lists are aliased: Off
	What condition do you need to check for your base case: 
	What do you return in the base case: 
	What is the recursive call on a smaller problem in the recursive case: 
	recursive case: 
	Text1: 
	Text2: 
	Text3: 
	Text4: 
	Text5: 
	Text6: 
	Text7: 
	Text8: 
	Text9: 
	Text10: 
	Text11: 
	Text12: 
	Text13: 
	Text14: 


