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ABSTRACT 
In recent years, there has been a rapid and wide spread of non- 
traditional computing platforms, especially mobile and portable com- 
puting devices. As applications become increasingly sophisticated 
and processing power increases, the most serious limitation on these 
devices is the available battery life. Dynamic Voltage Scaling (DVS) 
has been a key technique in exploiting the hardware characteristics 
of processors to reduce energy dissipation by lowering the supply 
voltage and operating frequency. The DVS algorithms are shown to 
be able to make dramatic energy savings while providing the nec- 
essary peak computation power in general-purpose systems. How- 
ever, for a large class of applications in embedded real-time sys- 
tems like cellular phones and camcorders, the variable operating 
frequency interferes with their deadline guarantee mechanisms, and 
DVS in this context, despite its growing importance, is largely 
overlooked/under-developed. To provide real-time guarantees, DVS 
must consider deadlines and periodicity of real-time tasks, requir- 
ing integration with the real-time scheduler. In this paper, we present 
a class of novel algorithms called real-time DVS (RT-DVS) that 
modify the OS's real-time scheduler and task management service 
to provide significant energy savings while maintaining real-time 
deadline guarantees. We show through simulations and a working 
prototype implementation that these RT-DVS algorithms closely 
approach the theoretical lower bound on energy consumption, and 
can easily reduce energy consumption 20% to 40% in an embedded 
real-time system. 

1. INTRODUCTION 
Computation and communication have been steadily moving to- 
ward mobile and portable platforms/devices. This is very evident 
in the growth of laptop computers and PDAs, but is also Occur- 
ring in the embedded world. With continued miniaturization and 
increasing computation power, we see ever growing use of power- 
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ful microprocessors running sophisticated, intelligent control soft- 
ware in a vast array of devices including digital camcorders, cellu- 
lar phones, and portable medical devices. 

Unfortunately, there is an inherent conflict in the design goals be- 
hind these devices: as mobile systems, they should be designed to 
maximize battery life, but as intelligent devices, they need powerful 
processors, which consume more energy than those in simpler de- 
vices, thus reducing battery life. In spite of continuous advances in 
semiconductor and battery technologies that allow microprocessors 
to provide much greater computation per unit of energy and longer 
total battery life, the fundamental tradeoff between performance 
and battery life remains critically important. 

Recently, significant research and development efforts have been 
made on Dynamic Voltage Scaling (DVS) [2, 4, 7, 8, 12, 19, 21, 
22, 23, 24, 25, 26, 28, 30]. DVS tries to address the tradeoff 
between performance and battery life by taking into account two 
important characteristics of most current computer systems: (1) 
the peak computing rate needed is much higher than the average 
throughput that must be sustained; and (2) the processors are based 
on CMOS logic. The first characteristic effectively means that high 
performance is needed only for a small fraction of the time, while 
for the rest of the time, a low-performance, low-power processor 
would suffice. We can achieve the low performance by simply 
lowering the operating frequency of the processor when the full 
speed is not needed. DVS goes beyond this and scales the oper- 
ating voltage of the processor along with the frequency. This is 
possible because static CMOS logic, used in the vast majority of 
microprocessors today, has a voltage-dependent maximum operat- 
ing frequency, so when used at a reduced frequency, the processor 
can operate at a lower supply voltage. Since the energy dissipated 
per cycle with CMOS circuitry scales quadratically to the supply 
voltage (E cx V 2) [2], DVS can potentially provide a very large 
net energy savings through frequency and voltage scaling. 

In time-constrained applications, often found in embedded systems 
like cellular phones and digital video cameras, DVS presents a se- 
rious problem. In these real-time embedded systems, one cannot 
directly apply most DVS algorithms known to date, since chang- 
ing the operating frequency of the processor will affect the exe- 
cution time of the tasks and may violate some of the timeliness 
guarantees. In this paper, we present several novel algorithms that 
incorporate DVS into the OS scheduler and task management ser- 
vices of a real-time embedded system, providing the energy sav- 
ings of DVS while preserving deadline guarantees. This is in sharp 
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contrast with the average throughput-based mechanisms typical of 
many current DVS algorithms. In addition to detailed simulations 
that show the energy-conserving benefits of our algorithms, we also 
present an actual implementation of our mechanisms, demonstrat- 
ing them with measurements on a working system. To the best of 
our knowledge, this is one of the first working implementations of 
DVS, and the first implementation of Real-Time DVS (RT-DVS). 

In the next section, we present details of DVS, real-time schedul- 
ing, and our new RT-DVS algorithms. Section 3 presents the sim- 
ulation results and provides insight into the system parameters that 
most influence the energy-savings potential of RT-DVS. Section 4 
describes our implementation of RT-DVS mechanisms in a work- 
ing system and some measurements obtained. Section 5 presents 
related work and puts our work in a larger perspective before we 
close with our conclusions and future directions in Section 6. 

2. RT-DVS 
To provide energy-saving DVS capability in a system requiring 
real-time deadline guarantees, we have developed a class of RT- 
DVS algorithms. In this section, we first consider DVS in general, 
and then discuss the restrictions imposed in embedded real-time 
systems. We then present RT-DVS algorithms that we have devel- 
oped for this time-constrained environment. 

2.1 Why DVS? 
Power requirements are one of the most critical constraints in mo- 
bile computing applications, limiting devices through restricted power 
dissipation, shortened battery life, or increased size and weight. 
The design of portable or mobile computing devices involves a 
tradeoff between these characteristics. For example, given a fixed 
size or weight for a handheld computation device/platform, one 
could design a system using a low-speed, low-power processor that 
provides long battery life, but poor performance, or a system with 
a (literally) more powerful processor that can handle all computa- 
tional loads, but requires frequent battery recharging. This simply 
reflects the cost of increasing performance - -  for a given technol- 
ogy, the faster the processor, the higher the energy costs (both over- 
all and per unit of computation). 

The discussion in this paper will generally focus on the energy con- 
sumption of the processor in a portable computation device for two 
main reasons. First, the practical size and weight of the device 
are generally fixed, so for a given battery technology, the avail- 
able energy is also fixed. This means that only power consumption 
affects the battery life of the device. Secondly, we focus partic- 
ularly on the processor because in most applications, the proces- 
sor is the most energy-consuming component of the system. This 
is definitely true on small handheld devices like PDAs [3], which 
have very few components, but also on large laptop computers [20] 
that have many components including large displays with back- 
lighting. Table 1 shows measured power consumption of a typical 
laptop computer. When it is idle, the display backlighting accounts 
for a large fraction of dissipated power, but at maximum compu- 
tational load, the processor subsystem dominates, accounting for 
nearly 60% of the energy consumed. As a result, the design prob- 
lem generally boils down to a tradeoff between the computational 
power of the processor and the system's battery life. 

One can avoid this problem by taking advantage of a feature very 
common in most computing applications: the average computa- 
tional throughput is often much lower than the peak computational 
capacity needed for adequate performance. Ideally, the processor 
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Table 1: Power consumption measured on Hewlett-Packard 
N3350 laptop computer 

would be "sized" to meet the average computational demands, and 
would have low energy costs per unit of computation, thus provid- 
ing good battery life. During the (relatively rare) times when peak 
computational load is imposed, the higher computational through- 
put of a more sophisticated processor would somehow be "config- 
ured" to meet the high performance requirement, but at a higher 
energy cost per unit of computation. Since the high-cost cycles 
are applied for only some, rather than all, of the computation, the 
energy consumption will be lower than if the more powerful pro- 
cessor were used all of the time, but the performance requirements 
are still met. 

One promising mechanism that provides the best of both low-power 
and high-performance processors in the same system is DVS [30]. 
DVS relies on special hardware, in particular, a programmable DC- 
DC switching voltage regulator, a programmable clock generator, 
and a high-performance processor with wide operating ranges, to 
provide this best-of-both-worlds capability. In order to meet peak 
computational loads, the processor is operated at its normal volt- 
age and frequency (which is also its maximum frequency). When 
the load is lower, the operating frequency is reduced to meet the 
computational requirements. In CMOS technology, used in virtu- 
ally all microprocessors today, the maximum operating frequency 
increases (within certain limits) with increased operating voltage, 
so when the processor is run slower, a reduced operating voltage 
suffices [2]. A second important characteristic is that the energy 
consumed by the processor per clock cycle scales quadratically 
with the operating voltage (E o: V 2) [2], so even a small change 
in voltage can have a significant impact on energy consumption. 
By dynamically scaling both voltage and frequency of the proces- 
sor based on computation load, DVS can provide the performance 
to meet peak computational demands, while on average, providing 
the reduced power consumption (including energy per unit compu- 
tation) benefits typically available on low-performance processors. 

2.2 Real-time issues 
For time-critical applications, however, the scaling of processor fre- 
quency could be detrimental. Particularly in real-time embedded 
systems like portable medical devices and cellular phones, where 
tasks must be completed by some specified deadlines, most algo- 
rithms for DVS known to date cannot be applied. These DVS algo- 
rithms do not consider real-time constraints and are based on solely 
average computational throughput [7, 23, 30]. Typically, they use a 
simple feedback mechanism, such as detecting the amount of idle 
time on the processor over a period of time, and then adjust the fre- 
quency and voltage to just handle the computational load. This is 
very simple and follows the load characteristics closely, but cannot 
provide any timeliness guarantees and tasks may miss their execu- 
tion deadlines. As an example, in an embedded camcorder con- 
troller, suppose there is a program that must react to a change in 
a sensor reading within a 5 ms deadline, and that it requires up to 
3 ms of computation time with the processor running at the maxi- 
mum operating frequency. With a DVS algorithm that reacts only 
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EDF_test (a): 
if (C'I/P1 + . . .  + C~/Pn  <_ a)  return true; 
else return false; 

RM_test (a): 
if (VT~ E {T1, . . .  ,T,~IPI < . . .  < P,~} 

[Pi/P~] * C1 "Jv"" -~- [P~/Pd * C, <_ a • P, ) 
return true; 
else return false; 

select_frequency: 
use lowest frequency fi E { f t , . . . ,  frail1 < " "  < fro} 
such that RM_tes t ( f i / fm)  or EDF_tes t ( f i / f~)  is true. 

Figure 1: Static voltage scaling algorithm for EDF and RM 
schedulers 

to average throughput, if the total load on the system is low, the 
processor would be set to operate at a low frequency, say half of 
the maximum, and the task, now requiring 6 ms of processor time, 
cannot meet its 5 ms deadline. In general, none of the average 
throughput-based DVS algorithms found in literature can provide 
real-time deadline guarantees. 

In order to realize the reduced energy-consumption benefits of DVS 
in a real-time embedded system, we need new DVS algorithms that 
are tightly-coupled with the actual real-time scheduler of the oper- 
ating system. In the classic model of a real-time system, there is a 
set of tasks that need to be executed periodically. Each task, Ti, has 
an associated period, Pi, and a worst-case computation time, C'~. 1. 
The task is released (put in a runnable state) periodically once ev- 
ery Pi time units (actual units can be seconds or processor cycles 
or any other meaningful quanta), and it can begin execution. The 
task needs to complete its execution by its deadline, typically de- 
fined as the end of the period [18], i.e., by the next release of the 
task. As long as each task Ti uses no more than Ci cycles in each 
invocation, a real-time scheduler can guarantee that the tasks will 
always receive enough processor cycles to complete each invoca- 
tion in time. Of course, to provide such guarantees, there are some 
conditions placed on allowed task sets, often expressed in the form 
of schedulability tests. A real-time scheduler guarantees that tasks 
will meet their deadlines given that: 

C1. the task set is schedulable (passes schedulability test), and 

C2. no task exceeds its specified worst-case computation bound. 

DVS, when applied in a real-time system, must ensure that both of 
these conditions hold. 

In this paper, we develop algorithms to integrate DVS mechanisms 
into the two most-studied real-time schedulers, Rate Monotonic 
(RM) and Earliest-Deadline-First (EDF) schedulers [13, 14, 17, 
18, 27]. RM is a static priority scheduler, and assigns task prior- 
ity according to period - -  it always selects first the task with the 
shortest period that is ready to run (released for execution). EDF 
is a dynamic priority scheduler that sorts tasks by deadlines and al- 
ways gives the highest priority to the released task with the most 

1Although not explicit in the model, aperiodic and sporadic tasks 
can be handled by a periodic or deferred server [16] For non-real- 
time tasks, too, we can provision processor time using a similar 
periodic server approach. 
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Figure 2: Static voltage scaling example 

Task Computing Time Period 
1 3 ms 8 ms 
2 3 ms 10 ms 
3 1 ms 14 ms 

Table 2: Example task set, where computing times are specified 
at the maximum processor frequency 

imminent deadline. In the classical treatments of these schedulers 
[18], both assume that the task deadline equals the period (i.e., the 
task must complete before its next invocation), that scheduling and 
preemption overheads are negligible, 2 and that the tasks are inde- 
pendent (no task will block waiting for another task). In our design 
of DVS to real-time systems, we maintain the same assumptions, 
since our primary goal is to reduce energy consumption, rather than 
to derive general scheduling mechanisms. 

In the rest of this section, we present our algorithms that perform 
DVS in time-constrained systems without compromising deadline 
guarantees of real-time schedulers. 

2 . 3  S t a t i c  voltage scaling 
We first propose a very simple mechanism for providing voltage 
scaling while maintaining real-time schedulability. In this mecha- 
nism we select the lowest possible operating frequency that will al- 
low the RM or EDF scheduler to meet all the deadlines for a given 
task set. This frequency is set statically, and will not be changed 
unless the task set is changed. 

To select the appropriate frequency, we first observe that scaling 
the operating frequency by a factor a (0 < a < 1) effectively 
results in the worst-case computation time needed by a task to be 
scaled by a factor l / a ,  while the desired period (and deadline) re- 
mains unaffected. We can take the well-known schedulability tests 
for EDF and RM schedulers from the real-time systems literature, 
and by using the scaled values for worst-case computation needs 
of the tasks, can test for schedulability at a particular frequency. 
The necessary and sufficient schedulability test for a task set under 
ideal EDF scheduling requires that the sum of the worst-case uti- 
lizations (computation time divided by period) be less than one, i.e., 
C1/P1 + " -  + C,~/Pn < 1 [18]. Using the scaled computation 
time values, we obtain the EDF schedulability test with frequency 

2We note that one could account for preemption overheads by 
computing the worst-case preemption sequences for each task and 
adding this overhead to its worst-case computation time. 
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Figure 3: Example of cycle-conserving EDF 

Task 
1 
2 
3 

Invocation 1 Invocation 2 
2 ms 1 ms 
1 ms 1 ms 
1 ms 1 ms 

Table 3: Actual computation requirements of the example task 
set (assuming execution at max. frequency) 

select_frequency(): 
use lowest freq. fi E { f l , . . . ,  f ,~lfl  < " "  < fro} 
such that U1 + . . "  + U,, < f~/f,,, 

upon task_release(TD: 
set Ui to Ci/Pi; 
select_frequency0; 

upon task_completion(Ti): 
set Ui to cci/Pi; 

/* cci is the actual cycles used this invocation */ 
select_frequency0; 

Figure 4: Cycle-conserving DVS for EDF schedulers 

scaling factor a: 
C1/P1 + ' "  + C,~/Pn < o~ 

Similarly, we start with the sufficient (but not necessary) condition 
for schedulability under RM scheduling [13] and obtain the test 
for a scaled frequency (see Figure 1). The operating frequency se- 
lected is the lowest one for which the modified schedulability test 
succeeds. The voltage, of course, is changed to match the oper- 
ating frequency. Assume that the operating frequencies and the 
corresponding voltage settings available on the particular hardware 
platform are specified in a table provided to the software. Figure 1 
summarizes the static voltage scaling for EDF and RM schedul- 
ing, where there are m operating frequencies f l , . . . ,  f,~ such that 
f l < f 2 < ' " < f m .  

Figure 2 illustrates these mechanisms, showing sample worst-case 
execution traces under statically-scaled EDF and RM scheduling. 
The example uses the task set in Table 2, which indicates each 
task's period and worst-case computation time, and assumes that 
three normalized, discrete frequencies are available (0.5, 0.75, and 
1.0). The figure also illustrates the difference between EDF and 
RM (i.e., deadline vs. rate for priority), and shows that statically- 
scaled RM cannot reduce frequency (and therefore reduce voltage 
and conserve energy) as aggressively as the EDF version. 

As long as for some available frequency, the task set passes the 
schedulability test, and as long as the tasks use no more than their 
scaled computation time, this simple mechanism will ensure that 
frequency and voltage scaling will not compromise timely execu- 
tion of tasks by their deadlines. The frequency and voltage set- 
ting selected are static with respect to a particular task set, and are 
changed only when the task set itself changes. As a result, this 
mechanism need not be tightly-coupled with the task management 
functions of the real-time operating system, simplifying implemen- 
tation. On the other hand, this algorithm may not realize the full 
potential of energy savings through frequency and voltage scaling. 
In particular, the static voltage scaling algorithm does not deal with 
situations where a task uses less than its worst-case requirement of 
processor cycles, which is usually the case. To deal with this com- 
mon situation, we need more sophisticated, RT-DVS mechanisms. 

2.4 Cycle-conserving RT-DVS 
Although real-time tasks are specified with worst-case computation 
requirements, they generally use much less than the worst case on 
most invocations. To take best advantage of this, a DVS mechanism 
could reduce the operating frequency and voltage when tasks use 
less than their worst-case time allotment, and increase frequency 

to meet the worst-case needs. When a task is released for its next 
invocation, we cannot know how much computation it will actu- 
ally require, so we must make the conservative assumption that it 
will need its specified worst-case processor time. When the task 
completes, we can compare the actual processor cycles used to 
the worst-case specification. Any unused cycles that were allot- 
ted to the task would normally (or eventually) be wasted, idling 
the processor. Instead of idling for extra processor cycles, we can 
devise DVS algorithms that avoid wasting cycles (hence "cycle- 
conserving") by reducing the operating frequency. This is some- 
what similar to slack time stealing [15], except surplus time is used 
to run other remaining tasks at a lower CPU frequency rather than 
accomplish more work. These algorithms are tightly-coupled with 
the operating system's task management services, since they may 
need to reduce frequency on each task completion, and increase 
frequency on each task release. The main challenge in designing 
such algorithms is to ensure that deadline guarantees are not vio- 
lated when the operating frequencies are reduced. 

For EDF scheduling, as mentioned earlier, we have a very simple 
schedulability test: as long as the sum of the worst-case task uti- 
lizations is less than c~, the task set is schedulable when operating 
at the maximum frequency scaled by factor c~. If a task completes 
earlier than its worst-case computation time, we can reclaim the 
excess time by recomputing utilization using the actual computing 
time consumed by the task. This reduced value is used until the 
task is released again for its next invocation. We illustrate this in 
Figure 3, using the same task set and available frequencies as be- 
fore, but using actual execution times from Table 3. Here, each 
invocation of the tasks may use less than the specified worst-case 
times, but the actual value cannot be known to the system until after 
the task completes execution. Therefore, at each scheduling point 
(task release or completion) the utilization is recomputed using the 
actual time for completed tasks and the specified worst case for the 
others, and the frequency is set appropriately. The numerical val- 
ues in the figure show the total task utilizations computed using the 
information available at each point. 

The algorithm itself(Figure 4) is simple and works as follows. Sup- 
pose a task Ti completes its current invocation after using cci cycles 
which are usually much smaller than its worst-case computation 
time Ci. Since task Ti uses no more than cei cycles in its current 
invocation, we treat the task as if its worst-case computation bound 
were cci. With the reduced utilization specified for this task, we can 
now potentially find a smaller scaling factor a (i.e., lower operating 
frequency) for which the task set remains schedulable. Trivially, 
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Figure 5: Example of cycle-conserving RM: (a) Initially use statically-scaled, worst-case RM schedule as target; (b) Determine 
minimum frequency so as to complete the same work by D1; rounding up to the closest discrete setting requires frequency 1.0; 
(c) After T1 completes (early), recompute the required frequency as 0.75; (d) Once T2 completes, a very low frequency (0.5) suffices 
to complete the remaining work by D1; (e) T1 is re-released, and now, try to match the work that should be done by D2; (f) Execution 
trace through time 16 ms. 

assume f j  is frequency set by static scaling algorithm 

select_frequency(): 
set am = max_cycles_until_next_deadline(); 
use lowest freq. f~ E { f x , . . . ,  fm[ f l  < " "  < fro} 
such that (dl + . . .  + d~) / sm <_ f i / f m  

upon task_release(T/): 
set c_left i = Ci ; 
set s,~ = max_cycles_until_next_deadlineO; 
set sj = s m  * f j / f m ;  
allocate_cycles (sj); 
select_frequency0; 

upon task_completion(T/): 
set cdefti = O; 
set di = O; 
select_frequencyO; 

during task_execution(Ti): 
decrement cdeft/ and dl; 

allocate_cycles(k): 
for i  = 1 t on ,  T / E { T 1 , . . . , T , ~ I P I < . . . < P , ~  } 

/* tasks sorted by period */ 
if ( c_left/ < k ) 

set di = c_left~; 
set k = k - c_left/; 

else 
set dl = k; 
set k = 0; 

Figure 6: Cycle-conserving DVS for RM schedulers 

given that the task set prior to this change was schedulable, the EDF 
schedulability test will continue to hold, and Ti (which has com- 
pleted execution) will not violate its lowered maximum computing 
bound for the remainder of time until its deadline. Therefore, the 
task set continues to meet both conditions C1 and C2 imposed by 
the real-time scheduler to guarantee timely execution, and as a re- 
suit, deadline guarantees provided by EDF scheduling will continue 
to hold at least until Ti is released for its next invocation. At this 
point, we must restore its computation bound to C / t o  ensure that 
it will not violate the temporarily-lowered bound and compromise 
the deadline guarantees. At this time, it may be necessary to in- 
crease the operating frequency. At first glance, this algorithm does 
not appear to significantly reduce frequencies, voltages, and energy 
expenditure. However, since multiple tasks may be simultaneously 
in the reduced-utilization state, the total savings can be significant. 

We could use the same schedulability-test-based approach to de- 
signing a cycle-conserving DVS algorithm for RM scheduling, but 
as the RM schedulability test is significantly more complex (O (n 2), 
where n is the number of tasks to be scheduled), we will take a dif- 
ferent approach here. We observe that even assuming tasks always 
require their worst-case computation times, the statically-scaled 
RM mechanism discussed earlier can maintain real-time deadline 
guarantees. We assert that as long as equal or better progress for all 
tasks is made here than in the worst case under the statically-scaled 
RM algorithm, deadlines can be met here as well, regardless of 
the actual operating frequencies. We will also try to avoid getting 
ahead of the worst-case execution pattern; this way, any reduction 
in the execution cycles used by the tasks can be applied to reducing 
operating frequency and voltage. Using the same example as be- 
fore, Figure 5 illustrates how this can be accomplished. We initially 
start with worst-case schedule based on static-scaling (a), which for 
this example, uses the maximum CPU frequency. To keep things 
simple, we do not look beyond the next deadline in the system. We 
then try to spread out the work that should be accomplished before 
this deadline over the entire interval from the current time to the 
deadline (b). This provides a minimum operating frequency value, 
but since the frequency settings are discrete, we round up to the 
closest available setting, frequency=l.0. After executing T1, we 

93 



D1 D2 D3 
o>, 1.00[ time=0 

:i : 
( a )  [ I , 

0 5 1'0 15 ms 

D1 D2 D3 ~ 1.00 time=O 

°-s° l -  r~  ~/Mmc"~,~J~.~/r.z/A 

0 5 10 15 ms 

~ 1 .001  

0 . 7 5 [ " - ~  

i 71 
(c) L 

0 

D1 D2 D3 ~ 1'00 1 time=4.67 i ~ . ~ l / ~ ~ . / ~ ( / ~ / ~ / % ~ . ~ / ~  
° ' T S l - - - - ~  I 

', : T3 i 
(d) [0 ~ " ~  lo 1'5 :ms 

~ 1.001 tirne=8 
0.75~-"-- '- '--~ ..... 

(e) I ~ , 
0 5 

D2 D3 

| i 
i i 

[ ' t rl : 
i 

10 1'5 ms 

D 1 D2 [)3 
~, 1.001 time=16 
=~ 0 . 7 5 1 ~ - -  I 

T3 : ~ o . s o ~  
~, ~ . ~  , == ( f )  _ _  

¢o 15 ms o 5 lo 15 ms 

Figure 7: Example of look-ahead EDF: (a) At time 0, plan to defer T3's execution until after DI (but by its deadline D3, and likewise, 
try to fit T2 between D1 and D2; (b) T1 and the portion of T2 that did not fit must execute before D1, requiring use of frequency 0.75; 
(c) After T1 completes, repeat calculations to find the new frequency setting, 0.5; (d) Repeating the calculation after T2 completes 
indicates that we do not need to execute anything by D1, but EDF is work-conserving, so T3 executes at the minimum frequency; 
(e) This occurs again when Tl's  next invocation is released; (f) Execution trace through time 16 ms. 

repeat the exercise of spreading out the remaining work over the 
remaining time until the next deadline (c), which results in a lower 
operating frequency since 7'1 completed earlier than its worst-case 
specified computing time. Repeating this at each scheduling point 
results in the final execution trace (f). 

Although conceptually simple, the actual algorithm (Figure 6) for 
this is somewhat complex due to a number of counters that must 
be maintained. In this algorithm, we need to keep track of the 
worst-case remaining cycles of computation, c_lefti, for each task 
Ti. When task Ti is released, c_lefti is set to Ci. We then determine 
the progress that the static voltage scaling RM mechanism would 
make in the worst case by the earliest deadline for any task in the 
system. We obtain sj and sin, the number of cycles to this next 
deadline, assuming operation at the statically-scaled and the max- 
imum frequencies, respectively. The sj  cycles are allocated to the 
tasks according to RM priority order, with each task Ti receiving an 
allocation di < e-left i corresponding to the number of cycles that 
it would execute under the statically-scaled RM scenario over this 
interval. As long as we execute at least di cycles for each task Ti 
(or if T~ completes) by the next task deadline, we are keeping pace 
with the worst-case scenario, so we set execution speed using the 
sum of the d values. As tasks execute, their c_left and d values are 
decremented. When a task Ti completes, c_lefll and di are both set 
to 0, and the frequency and voltage are changed. Because we use 
this pacing criteria to select the operating frequency, this algorithm 
guarantees that at any task deadline, all tasks that would have com- 
pleted execution in the worst-case statically-scaled RM schedule 
would also have completed here, hence meeting all deadlines. 

These algorithms dynamically adjust frequency and voltage, react- 
ing to the actual computational requirements of the real-time tasks. 
At most, they require 2 frequency/voltage switches per task per in- 
vocation (once each at release and completion), so any overheads 
for hardware voltage change can be accounted in the worst-case 
computation time allocations of the tasks. As we will see later, the 
algorithms can achieve significant energy savings without affecting 
real-time guarantees. 

2.5 Look-Ahead RT-DVS 
The final (and most aggressive) RT-DVS algorithm that we intro- 
duce in this paper attempts to achieve even better energy savings us- 
ing a look-ahead technique to determine future computation need 
and defer task execution. The cycle-conserving approaches dis- 
cussed above assume the worst case initially and execute at a high 
frequency until some tasks complete, and only then reduce operat- 
ing frequency and voltage. In contrast, the look-ahead scheme tries 
to defer as much work as possible, and sets the operating frequency 
to meet the minimum work that must be done now to ensure all 
future deadlines are met. Of course, this may require that we will 
be forced to run at high frequencies later in order to complete all 
of the deferred work in time. On the other hand, if tasks tend to 
use much less than their worst-case computing time allocations, 
the peak execution rates for deferred work may never be needed, 
and this heuristic will allow the system to continue operating at a 
low frequency and voltage while completing all tasks by their dead- 
lines. 

Continuing with the example used earlier, we illustrate how a look- 
ahead RT-DVS EDF algorithm works in Figure 7. The goal is to 
defer work beyond the earliest deadline in the system (D1) so that 
we can operate at a low frequency now. We allocate time in the 
schedule for the worst-case execution of each task, starting with 
the task with the latest deadline, T3. We spread out Ts's work be- 
tween D1 and its own deadline, D3, subject to a constraint reserv- 
ing capacity for future invocations of the other tasks (a). We repeat 
this step for T2, which cannot entirely fit between D1 and Dz after 
allocating T3 and reserving capacity for future invocations of T1. 
Additional work for T2 and all of T1 are allotted before D1 (b). We 
note that more of T2 could be deferred beyond D1 if we moved all 
of 713 after D2, but for simplicity, this is not considered. We use 
the work allocated before D1 to determine the operating frequency. 
Once Tx has completed, using less than its specified worst-case ex- 
ecution cycles, we repeat this and find a lower operating frequency 
(c). Continuing this method of trying to defer work beyond the 
next deadline in the system ultimately results in the execution trace 
shown in (f). 
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select_frequency(x): 
use lowest freq. f i  E { f l , . . .  , f ra i l1  < . . .  < fro} 
such that x < f ~ / f ,,~ 

upon task_release(TD: 
set c_left i = Ci ; 
defer(); 

upon task_completion(TD: 
set c_left i = 0; 
defer(); 

during task_execution(T/): 
decrement c_left i; 

defer(): 
set U = C1/P1  + . . .  + C,~/P,~; 
set s = 0; 
fo r i  = l ton ,  T / E { T 1 , . . . , T , ~ I D I > . . . > D , ~ }  

/* Note: reverse EDF order of tasks */ 
set U = U - Ci / Pi ; 
set x = max(0, e_left~ - (1 - U ) ( D i  - D,~)); 
set U = U + ( c _ l e f t / -  x ) / ( D i  - Dn) ;  
set s = s + x; 

select_frequency ( s / ( D , ~ -  current_time)); 

Figure 8: Look-Ahead DVS for EDF schedulers 

The actual algorithm for look-ahead RT-DVS with EDF scheduling 
is shown in Figure 8. As in the cycle-conserving RT-DVS algorithm 
for RM, we keep track of the worst-case remaining computation 
c-left i for the current invocation of task T/. This is set to Ci on task 
release, decremented as the task executes, and set to 0 on comple- 
tion. The major step in this algorithm is the deferral function. Here, 
we look at the interval until the next task deadline, try to push as 
much work as we can beyond the deadline, and compute the mini- 
mum number of cycles, s, that we must execute during this interval 
in order to meet all future deadlines. The operating frequency is set 
just fast enough to execute s cycles over this interval. To calculate 
8, we look at the tasks in reverse EDF order (i.e., latest deadline 
first). Assuming worst-case utilization by tasks with earlier dead- 
lines (effectively reserving time for their future invocations), we 
calculate the minimum number of cycles, x, that the task must exe- 
cute before the closest deadline, D,~, in order for it to complete by 
its own deadline. A cumulative utilization U is adjusted to reflect 
the actual utilization of the task for the time after D,~. This cal- 
culation is repeated for all of the tasks, using assumed worst-case 
utilization values for earlier-deadline tasks and the computed val- 
ues for the later-deadline ones. s is simply the sum of the x values 
calculated for all of the tasks, and therefore reflects the total num- 
ber of cycles that must execute by D,~ in order for all tasks to meet 
their deadlines. Although this algorithm very aggressively reduces 
processor frequency and voltage, it ensures that there are sufficient 
cycles available for each task to meet its deadline after reserving 
worst-case requirements for higher-priority (earlier deadline) tasks. 

2.6 Summary of RT-DVS algorithms 
All of  the RT-DVS algorithms we presented thus far should be fairly 
easy to incorporate into a real-time operating system, and do not 
require significant processing costs. The dynamic schemes all re- 

Table 4: 
traces 

RT-DVS method energy used 
none (plain EDF) 
statically-scaled RM 
statically-scaled EDF 
cycle-conserving EDF 
cycle-conserving RM 
took-ahead EDF 

1.0 
1.0 

0.64 
0.52 
0.71 
0.44 

Normalized energy consumption for the example 

quire O ( n )  computation (assuming the scheduler provides an EDF 
sorted task list), and should not require significant processing over 
the scheduler. The most significant overheads may come from the 
hardware voltage switching times. However, in all of our algo- 
rithms, no more than two switches can occur per task per invocation 
period, so these overheads can easily be accounted for, and added 
to, the worst-case task computation times. 

To conclude our series of examples, Table 4 shows the normalized 
energy dissipated in the example task (Table 2) set for the first 16 
ms, using the actual execution times from Table 3. We assume 
that the 0.5, 0.75 and 1.0 frequency settings need 3, 4, and 5 volts, 
respectively, and that idle cycles consume no energy. More general 
evaluation of our algorithms will be done in the next section. 

3. SIMULATIONS 
We have developed a simulator to evaluate the potential energy sav- 
ings from voltage scaling in a real-time scheduled system. The 
following subsection describes our simulator and the assumptions 
made in its design. Later, we show some simulation results and 
provide insight into the most significant system parameters affect- 
ing RT-DVS energy savings. 

3.1 Simulation Methodology 
Using C++, we developed a simulator for the operation of hardware 
capable of voltage and frequency scaling with real-time scheduling. 
The simulator takes as input a task set, specified with the period and 
computation requirements of each task, as well as several system 
parameters, and provides the energy consumption of the system for 
each of the algorithms we have developed. EDF and RM sched- 
ulers without any DVS support are also simulated for comparison) 
Parameters supplied to the simulator include the machine specifica- 
tion (a list of  the frequencies and corresponding voltages available 
on the simulated platform) and a specification for the actual frac- 
tion of  the worst-case execution cycles that the tasks will require 
for each invocation. This latter parameter can be a constant (e.g., 
0.9 indicates that each task will use 90% of its specified worst-case 
computation cycles during each invocation), or can be a random 
function (e.g., uniformly-distributed random multiplier for each in- 
vocation). 

The simulation assumes that a constant amount of energy is re- 
quired for each cycle of operation at a given voltage. This quantum 
is scaled by the square of the operating voltage, consistent with en- 
ergy dissipation in CMOS circuits ( E  cx V2) .  Only the energy con- 
sumed by the processor is computed, and variations due to differ- 

3Without DVS, energy consumption is the same for both EDF and 
RM, so EDF numbers alone would suffice. However, since some 
task sets are schedulable under EDF, but not under RM, we simulate 
both to verify that all task sets that are schedulable under RM are 
also schedulable when using the RM-based RT-DVS mechanisms. 
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ent types of instructions executed are not taken into account. With 
this simplification, the task execution modeling can be reduced to 
counting cycles of execution, and execution traces are not needed. 
The software-controlled halt feature, available on some processors 
and used for reducing energy expenditure during idle, is simulated 
by specifying an idle level parameter. This value gives the ratio be- 
tween energy consumed during a cycle while halted and that during 
a cycle of normal operation (e.g., a value of 0.5 indicates a cycle 
spent idling dissipates one half the energy of a cycle of compu- 
tation). For simplicity, only task execution and idle (halt) cycles 
are considered. In particular, this does not consider preemption 
and task switch overheads or the time required to switch operating 
frequency or voltages. There is no loss of generality from these 
simplifications. The preemption and task switch overheads are the 
same with or without DVS, so they have no effect on relative power 
dissipation. The voltage switching overheads incur a time penalty, 
which may affect the schedulability of some task sets, but incur al- 
most no energy costs, as the processor does not operate during the 
switching interval. 

The real-time task sets are specified using a pair of numbers for 
each task, indicating its period and worst-case computation time. 
The task sets are generated randomly as follows. Each task has an 
equal probability of having a short (1-10ms), medium (10-100ms), 
or long (100-1000ms) period. Within each range, task periods are 
uniformly distributed. This simulates the varied mix of short and 
long period tasks commonly found in real-time systems. The com- 
putation requirements of the tasks are assigned randomly using a 
similar 3 range uniform distribution. Finally, the task computation 
requirements are scaled by a constant chosen such that the sum of 
the utilizations of the tasks in the task set reaches a desired value. 
This method of generating real-time task sets has been used previ- 
ously in the development and evaluation of a real-time embedded 
microkernel [31]. Averaged across hundreds of distinct task sets 
generated for several different total worst-case utilization values, 
the simulations provide a relationship of energy consumption to 
worst-case utilization of a task set. 

3.2 S imula t ion  Results  
We have performed extensive simulations of the RT-DVS algo- 
rithms to determine the most important and interesting system pa- 
rameters that affect energy consumption. Unless specified other- 
wise, we assume a DVS-capable platform that provides 3 relative 
operating frequencies (0.5, 0.75, and 1.0) and corresponding volt- 
ages (3, 4, and 5, respectively). 

In the following simulations, we compare our RT-DVS algorithms 
to each other and to a non-DVS system. We also include a theoret- 
ical lower bound for energy dissipation. This lower bound reflects 
execution throughput only, and does not consider any timing issues 
(e.g., whether any task is active or not). It is computed by taking 
the total number of task computation cycles in the simulation, and 
determining the absolute minimum energy with which these can be 
executed over the simulation time duration with the given platform 
frequency and voltage specification. No real algorithms can do bet- 
ter than this theoretical lower bound, but it is interesting to see how 
close our mechanisms approach this bound. 

Number of tasks: 
In our first set of simulations, we determine the effects of vary- 
ing the number of tasks in the task sets. Figure 9 shows the en- 
ergy consumption for task sets with 5, 10, and 15 tasks for all of 
our RT-DVS algorithms as well as unmodified EDF. All of these 

simulations assume that the processor provides a perfect software- 
controlled halt function (so idling the processor will consume no 
energy), thus showing scheduling without any energy conserving 
features in the most favorable light. In addition, we assume that 
tasks do consume their worst-case computation requirements dur- 
ing each invocation. With these extremes, there is no difference be- 
tween the statically-scaled and cycle-conserving EDF algorithms. 

We notice immediately that the RT-DVS algorithms show poten- 
tial for large energy savings, particularly for task sets with mid- 
range worst-case processor utilization values. The look-ahead RT- 
DVS mechanism, in particular, seems able to follow the theoretical 
lower bound very closely. Although the total utilization greatly af- 
fects energy consumption, the number of tasks has very little effect. 
Neither the relative nor the absolute positions of the curves for the 
different algorithms shift significantly when the number of tasks is 
varied. Since varying the number of tasks has little effect, for all 
further simulations, we will use a single value. 

Varying idle level: 
The preceding simulations assumed that a perfect software-controlled 
halt feature is provided by the processor, so idle time consumes no 
energy. To see how an imperfect halt feature affects power con- 
sumption, we performed several simulations varying the idle level 
factor, which is the ratio of energy consumed in a cycle while the 
processor is halted, to the energy consumed in a normal execution 
cycle. Figure 10 shows the results for idle level factors 0.01, 0.1, 
and 1.0. Since the absolute energy consumed will obviously in- 
crease as the idle state energy consumption increases, it is more 
insightful to look at the relative energy consumption by plotting 
the values normalized with respect to the unmodified EDF energy 
consumption. 

The most significant result is that even with a perfect halt feature 
(i.e., idle level is 0), where the non-energy conserving schedulers 
are shown in the best light, there is still a very large percentage 
improvement with the RT-DVS algorithms. Obviously, as the idle 
level increases to 1 (same energy consumption as in normal oper- 
ation), the percentage savings with voltage scaling improves. The 
relative performance among the energy-aware schedulers is not sig- 
nificantly affected by changing the idle power consumption level, 
although the dynamic algorithms benefit more than the statically- 
scaled ones. This is evident as the cycle-conserving EDF mecha- 
nism results diverge from the statically-scaled EDF results. This is 
easily explained by the fact that the dynamic algorithms switch to 
the lowest frequency and voltage during idle, while the static ones 
do not; with perfect idle, this makes no difference, but as idle cycle 
energy consumption approaches that of execution cycles, the dy- 
namic algorithms perform relatively better. For the remainder of 
the simulations, we assume an idle level of 0. 

Varying machine specifications: 
All of the previous simulations used only one set of available fre- 
quency and voltage scaling settings. We now investigate the ef- 
fects of varying the simulated machine specifications. The follow- 
ing summarizes the hardware voltage and frequency settings, where 
each tuple consists of the relative frequency and the corresponding 
processor voltage: 

machine 0: { (0.5, 3), (0.75, 4), (1.0, 5) } 
machine 1: { (0.5, 3), (0.75, 4), (0.83, 4.5), (1.0, 5) } 
machine 2: { (0.36, 1.4), (0.55, 1.5), (0.64, 1.6), 

(0.73, 1.7), (0.82, 1.8), (0.91, 1.9), (1.0, 2.0) } 
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Figure 9: Energy consumption with 5 ,  10, and 15 tasks 
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Figure 10: Normalized energy consumption with idle level factors 0.01, 0.1, and 1.0 
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Figure 13: Normalized energy consumption with uniform dis- 
tribution for computation 

Figure 11 shows the simulation results for machines 0, 1, and 2. 
Machine 0, used in all of the previous simulations, has frequency 
settings that can be expected on a standard PC motherboard, al- 
though the corresponding voltage levels were arbitrarily selected. 
Machine 1 differs from this in that it has the additional frequency 
setting, 0.83. With this small change, we expect only slight dif- 
ferences in the simulation results with these specifications. The 
most significant change is seen with cycle-conserving EDF (and 
statically-scaled EDF, since the two are identical here). With the 
extra operating point in the region near the cross-over point be- 
tween ccEDF and ccRM, the ccEDF algorithm benefits, shifting 
the cross-over point closer to full utilization. 

Machine 2 is very different from the other two, and reflects the set- 
tings that may be available on a platform incorporating an AMD 
K6 processor with AMD's PowerNow? mechanism [1]. Again, the 
voltage levels are only speculated here. As it has many more set- 
tings to select from, the plotted curves tend to be smoother. Also, 
since the relative voltage range is smaller with this specification, 
the maximum savings is not as good as with the other two machine 
specifications. More significant is the fact that the cycle-conserving 
EDF outperforms the look-ahead EDF algorithm, ccEDF and stat- 
icEDF benefit from the large number of settings, since this allows 
them to more closely match the task set and reduce energy ex- 
penditure. In fact, they very closely approximate the theoretical 
lower bound over the entire range of utilizations. On the other 
hand, IaEDF sets the frequency trying to defer processing (which, 
in the worst case, would require running at full speed later). With 
more settings, the low frequency setting is closely matched, requir- 
ing high-voltage, high-frequency processing later, hurting perform- 
ance. With fewer settings, the frequency selected would be some- 
what higher, so less processing is deferred, lessening the likelihood 
of needing higher voltage and frequency settings later, thus improv- 
ing performance. In a sense, the error due to a limited number of 
frequency steps is detrimental in the ccEDF scheme, but beneficial 
with IaEDE These results, therefore, indicate that the energy sav- 
ings from the various RT-DVS algorithms depend greatly on the 
available voltage and frequency settings of the platform. 

Varying computation time: 
In this set of experiments, we vary the distribution of the actual 
computation required by the tasks during each invocation to see 
how well the RT-DVS mechanisms take advantage of task sets that 
do not consume their worst-case computation times. In the pre- 

ceding simulations, we assumed that the tasks always require their 
worst-case computation allocation. Figure 12 shows simulation re- 
suits for tasks that require a constant 90%, 70%, and 50% of their 
worst-case execution cycles for each invocation. We observe that 
the statically-scaled mechanisms are not affected, since they scale 
voltage and frequency based solely on the worst-case computation 
times specified for the tasks. The results for the cycle-conserving 
RM algorithm do not show significant change, indicating that it 
does not do a very good job of adapting to tasks that use less than 
their specified worst-case computation times. On the other hand, 
both the cycle-conserving and look-ahead EDF schemes show great 
reductions in relative energy consumption as the actual computa- 
tion performed decreases. 

Figure 13 shows the simulation results using tasks with a uniform 
distribution between 0 and their worst-case computation. Despite 
the randomness introduced, the results appear identical to setting 
computation to a constant one half of the specified value for each 
invocation of a task. This makes sense, since the average execution 
with the uniform distribution is 0.5 times the worst-case for each 
task. From this, it seems that the actual distribution of computation 
per invocation is not the critical factor for energy conservation per- 
formance. Instead, for the dynamic mechanisms, it is the average 
utilization that determines relative energy consumption, while for 
the static scaling methods, the worst-case utilization is the deter- 
mining factor. The exception is the ccRM algorithm, which, albeit 
dynamic, has results that primarily reflect the worst-case utilization 
of the task set. 

4. IMPLEMENTATION 
This section describes our implementation of a real-time scheduled 
system incorporating the proposed DVS algorithms. We will dis- 
cuss the architecture of the system and present measurements of the 
actual energy savings with our RT-DVS algorithms. 

4.1 Hardware Platform 
Although we developed the RT-DVS mechanisms primarily for em- 
bedded real-time devices, our prototype system is implemented on 
the PC architecture. The platform is a Hewlett-Packard N3350 
notebook computer, which has an AMD K6-2+ [1] processor with 
a maximum operating frequency of 550 MHz. Some of the power 
consumption numbers measured on this laptop were shown earlier 
in Table 1. This processor features PowerNow!, AMD's extensions 
that allow the processor's clock frequency and voltage to be ad- 
justed dynamically under software control. We have also looked 
into a similar offering from Intel called SpeedStep [10], but this 
controls voltage and frequency through hardware external to the 
processor. Although it is possible to adjust the settings under soft- 
ware control, we were not able to determine the proper output se~ 
quences needed to control the external hardware. We do not have 
experience with the Transmeta Crusoe processor [29] or with var- 
ious embedded processors (such as Intel XScale [9]) that are now 
supporting DVS. 

The K6-2+ processor specification allows system software to se- 
lect one of eight different frequencies from its built-in PLL clock 
generator (200 to 600 MHz in 50 MHz increments, skipping 250), 
limited by the maximum processor clock rate (550 MHz here). The 
processor has 5 control pins that can be used to set the voltage 
through an external regulator. Although 32 settings are possible, 
there is only one that is explicitly specified (the default 2.0V set- 
ting); the rest are left up to the individual manufacturers. HP chose 
to incorporate only 2 voltage settings: 1.4V and 2.0V. The volt- 
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Figure 14: Software architecture fur RT-DVS implementation 

age and frequency selectors are independently set, so we need a 
function to map each frequency to the appropriate available volt- 
age level. As there are no such specifications publicly available, 
we determined this experimentally. The processor was stable up to 
450 MHz at 1.4 V, and needed the 2.0 V setting for higher frequen- 
cies. Stability was checked using a set of CPU-intensive bench- 
marks (mpgl 2 3 in a loop and Linux kernel compile), and verifying 
proper behavior. We note that this empirical study used a sample 
size of one, so the actual frequency to voltage mappings may vary 
for other machines, even of the same model. 

The processor has a mandatory stop interval associated with every 
change of the voltage or frequency transition, during which the pro- 
cessor halts execution. This mandatory halt duration is meant to en- 
sure that the voltage supply and clock have time to stabilize before 
the processor continues execution. As the characteristics of dif- 
ferent hardware implementations of the external voltage regulators 
can vary greatly, this stop duration is programmable in multiples of 
41/zs (4096 cycles of the 100 MHz system bus clock). According 
to our experience, it takes negligible time for frequency changes 
to occur. Using the CPU time-stamp register (basically a cycle 
counter), which continues to increment during the halt duration, 
we observed that around 8200 cycles occur during any transition to 
200 MHz, and around 22500 cycles for a transition to 550 MHz, 
both with the minimum interval of 41 ps. This indicates that the 
frequency of the CPU clock changes quickly and that most of the 
halt time is spent at the target frequency. We do not know the actual 
time required for voltage transition to occur, but in our experiments 
using a halt duration value of 10 (approximately 0.4 ms) resulted in 
no observable instability. The switching overheads in our system, 
therefore, are 0.4 ms when voltage changes, and 41 ps when only 
frequency changes. As mentioned earlier, we can account for this 
switching overhead in the computation requirements of the tasks, 
since at most only two transitions are attributable to each task in 
each invocation. 

4.2  S o f t w a r e  Archi tec ture  
We implemented our algorithms as extension modules to the Linux 
2.2.16 kernel. Although it is not a real-time operating system, 
Linux is easily extended through modules and provides a robust de- 
velopment environment familiar to us. The high-level view of our 
software architecture is shown in Figure 14. The approach taken 
for this implementation was to maximize flexibility and ease of use, 
rather than optimize for performance. As such, this implementation 
serves as a good proof-of-concept, rather than the ideal model. By 
implementing our kemeMevel code as Linux kernel modules, we 
avoided any code changes to the Linux kernel, and these modules 
should be able to plug into unmodified 2.2.x kernels. 

Digital Oscilloscope ~ D C  
[ ~ o 0 o  toni Adapter Laptop 

looooo o 
Current Probe (battery removed) 

Figure 15: Power measurement on laptop implementation 

The central module in our implementation provides support for pe- 
riodic real-time tasks in Linux. This is done by attaching call-back 
functions to hooks inside the Linux scheduler and timer tick han- 
dlers. This mechanism allows our modules to provide tight timing 
control as well as override the default Unix scheduling policy for 
our real-time tasks. Note that this module does not actually define 
the real-time scheduling policy or the DVS algorithm. Instead, we 
use separate modules that provide the real-time scheduling policy 
and the RT-DVS algorithms. One such RT scheduler/DVS module 
can be loaded on the system at a time. By separating the underly- 
ing periodic RT support from the scheduling and DVS policies, this 
architecture allows dynamic switching of these latter policies with- 
out shutting down the system or the running RT tasks. (Of course, 
during the switch-over time between these policy modules, a real- 
time scheduler is not defined, and the timeliness constraints of any 
running RT tasks may not be met). The last kernel module in our 
implementation handles the access to the PowerNowl mechanism 
to adjust clock speed and voltage. This provides a clean, high-level 
interface for setting the appropriate bits of the processor's special 
feature register for any desired frequency and voltage level. 

The modules provide an interface to user-level programs through 
the L i n u x / p r o o f s  filesystem. Tasks can use ordinary file read 
and write mechanisms to interact with our modules. In particular, a 
task can write its required period and maximum computing bound 
to our module, and it will be made into a periodic real-time task that 
will be released periodically, scheduled according to the currently- 
loaded policy module, and will receive static priority over non-RT 
tasks on the system. The task also uses writes to indicate the com- 
pletion of each invocation, at which time it will be blocked until the 
next release time. As long as the task keeps the file handle open, it 
will be registered as a real-time task with our kernel extensions. Al- 
though this high-level, filesystem interface is not as efficient as di- 
rect system calls, it is convenient in this prototype implementation, 
since we can simply use c a t  to read from our modules and ob- 
tain status information in a human readable form. The PowerNow! 
module also provides a / p r o c f s  interface. This will allow for a 
user-level, non-RT DVS demon, implementing algorithms found in 
other DVS literature, or to manually deal with operating frequency 
and voltage through simple Unix shell commands. 

4.3 M e a s u r e m e n t s  and  Observat ions  
We performed several experiments with our RT-DVS implementa- 
tion and measured the actual energy consumption of the system. 
Figure 15 shows the setup used to measure energy consumption. 
The laptop battery is removed and the system is run using the ex- 
ternal DC power adapter. Using a special current probe, a digital 
oscilloscope is used to measure the power consumed by the lap- 
top as the product of the current and voltage supplied. This basic 
methodology is very similar to the one used in the PowerScope [6], 
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Figure 17: Power consumption on simulated platform 

but instead of a slow digital multimeter, we use an oscilloscope that 
can show the transient behavior and also provide the true average 
power consumption over long intervals. Using the long duration 
acquisition capability of the digital oscilloscope, our power mea- 
surements are averaged over 15 to 30 second intervals. 

Figure 16 shows the actual power consumption measured for our 
RT-DVS algorithms while varying worst-case CPU utilization for 
a set of 5 tasks which always consume 90% of their worst-case 
computation allocated for each invocation. The measurements re- 
flect the total system power, not just the CPU energy dissipation. 
As a result, there is a constant, irreducible power drain from the 
system board consumption (the display backlighting was turned 
off for these measurements; with this on, there would have been 
an additional constant 6 W to each measurement). Even with this 
overhead, our RT-DVS mechanisms show a significant 20% to 40% 
reduction in power consumption, while still providing the deadline 
guarantees of a real-time system. 

Figure 17 shows a simulation with identical parameters (including 
the 2 voltage-level machine specification) to these measurements. 
The simulation only reflects the processor's energy consumption, 
so does not include any energy overheads from the rest of the sys- 
tem. It is clear that, except for the addition of constant overheads in 
the actual measurements, the results are nearly identical. This vali- 
dates our simulation results, showing that the results we have seen 
earlier really hold in real systems, despite the simplifying assump- 
tions in the simulator. The simulations are accurate and may be 
useful for predicting the performance of RT-DVS implementations. 

We also note two interesting phenomena that should be consid- 
ered when implementing a system with RT-DVS. First, we noticed 
that the very first invocation of a task may overrun its specified 
computing time bound. This occurs only on the first invocation, 
and is caused by "cold" processor and operating system state. In 
particular, when the task begins execution, many cache misses, 
translation-look-aside buffer (TLB) misses, and page faults occur 
in the system (the last may be due to the copy-on-write page al- 
location mechanism used by Linux). These processing overheads 
count against the task's execution time, and may cause it to exceed 
its bound. On subsequent invocations, the state is "warm," and this 
problem disappears. This is due to the large difference between 
worst-case and average-case performance on general-purpose plat- 
forms, and explains why real-time systems tend to use specialized 
platforms to decrease or eliminate such variations in performance. 

The second important observation is that the dynamic addition of 
a task to the task set may cause transient missed deadlines unless 
one is very careful. Particularly with the more aggressive RT-DVS 
schemes, the system may be so closely matched to the current task 
set load that there may not be sufficient processor cycles remaining 
before the task deadlines to also handle the new task. One solution 
to this problem is to immediately insert the task into task set, so 
DVS decisions are based on the new system characteristics, but 
defer the initial release of the new task until the current invocations 
of all existing tasks have completed. This ensures that the effects 
of past DVS decisions, based on the old task set, will have expired 
by the time the new task is released. 

5. RELATED WORK 
Recently, there have been a large number of publications describ- 
ing DVS techniques. Most of them present algorithms that are very 
loosely-coupled with the underlying OS scheduling and task man- 
agement systems, relying on average processor utilization to per- 
form voltage and frequency scaling [7, 23, 30]. They are basically 
matching the operating frequency to some weighted average of the 
current processor load (or conversely, idle time) using a simple 
feedback mechanism. Although these mechanisms result in close 
adaptation to the workload and large energy savings, they are un- 
suitable for real-time systems. More recent DVS research [4, 19] 
have shown methods of maintaining good interactive performance 
for general-purpose applications with voltage and frequency scal- 
ing. This is done through prediction of episodic interaction [4] or 
by applying soft deadlines and estimating task work distributions 
[19]. These methods show good results for maintaining short re- 
sponse times in human-interactive and multimedia applications, but 
are not intended for the stricter timeliness constraints of real-time 
systems. 

Some DVS work has produced algorithms closely tied to the sched- 
uler [22, 24, 26], with some claiming real-time capability. These, 
however, take a very simplistic view of real-time tasks - -  only tak- 
ing into account a single execution and deadline for a task. As 
such, they can only handle sporadic tasks that execute just once. 
They cannot handle the most important, canonical model of real- 
time systems, which uses periodic real-time tasks. Furthermore, it 
is not clear how new tasks entering the system can be handled in a 
timely manner, especially since all of the tasks are single-shot, and 
since the system may not have sufficient computing resources after 
having adapted so closely to the current task set. 
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To the best of our knowledge, there are only four recent papers 
[12, 28, 21, 8] that deal with DVS in a true real-time system's 
perspective. The first paper [12] uses a combined offline and on- 
line scheduling technique. A worst-case execution time (WCET) 
schedule, which provides the ideal operating frequency and voltage 
schedule assuming that tasks require their worst-case computation 
time, is calculated offline. The online scheduler further reduces fre- 
quency and voltage when tasks use less than their requested com- 
puting quota, but can still provide deadline guarantees by ensuring 
all invocations complete no later than in the WCET schedule. This 
is much more complicated than the algorithms we have presented, 
yet cannot deal effectively with dynamic task sets. 

The second, a work-in-progress paper [28], presents two mecha- 
nisms for RT-DVS. One mechanism attempts to calculate the best 
feasible schedule; this is a computationally-expensive process and 
can only be done offline. The other is a heuristic based around 
EDF that tests schedulability at each scheduling point. The details 
of this online mechanism were not presented in [28]. Moreover, 
the assumption of a common period for all of the tasks is some- 
what unrealistic - -  even if a polynomial transformation is used to 
produce common periods, they may need to schedule over an arbi- 
trarily long planning cycle in their algorithm. 

The third paper [21] looks at DVS from the application side. It 
presents a mechanism by which the application monitors the progress 
of its own execution, compares it to the profiled worst-case execu- 
tion, and adjusts the processor frequency and voltage accordingly. 
The compiler inserts this monitoring mechanism at various points 
in the application. It is not clear how to determine the locations 
of these points in a task/application, nor how this mechanism will 
scale to systems with multiple concurrent tasks/applications. 

The most recent [8] RT-DVS paper combines offline analysis with 
online slack-time stealing [ 15] and dynamic, probability-based volt- 
age scaling. Offline analysis provides minimum operating rates for 
each task based on worst-case execution time. This is used in con- 
junction with a probability distribution for actual computation time 
to change frequency and voltage without violating deadlines. Ex- 
cess time is used to run remaining tasks at lower CPU frequencies. 

These papers, and indeed almost all papers dealing with DVS, only 
present simulations of algorithms. In contrast, we present fairly 
simple, online mechanisms for RT-DVS that work within the com- 
mon models, assumptions, and contexts of real-time systems. We 
implemented and demonstrated RT-DVS in a real, working system. 
A recent paper [25] also describes a working DVS implementation, 
using a modified StrongARM embedded system board, which is 
used to evaluate a DVS scheduler in [26]. 

In addition to DVS, there has been much research regarding other 
energy-conserving issues, including work on application adaptation 
[5] and communication-oriented energy conservation [11]. These 
issues are orthogonal to DVS and complementary to our RT-DVS 
mechanisms. 

6. CONCLUSIONS AND FUTURE 
D I R E C T I O N S  

In this paper, we have presented several novel algorithms for real- 
time dynamic voltage scaling that, when coupled with the under- 
lying OS task management mechanisms and real-time scheduler, 
can achieve significant energy savings, while simultaneously pre- 
serving timeliness guarantees made by real-time scheduling. We 

first presented extensive simulation results, showing the most sig- 
nificant parameters affecting energy conservation through RT-DVS 
mechanisms, and the extent to which CPU power dissipation can 
be reduced. In particular, we have shown that the number of tasks 
and the energy efficiency of idle cycles do not greatly affect the 
relative savings of the RT-DVS mechanisms, while the voltage and 
frequency settings available on the underlying hardware and the 
task set CPU utilizations profoundly affect the performance of our 
algorithms. Furthermore, our look-ahead and cycle-conserving RT- 
DVS mechanisms can achieve close to the theoretical lower bound 
on energy. We have also implemented our algorithms and, using 
actual measurements, have validated that significant energy savings 
can be realized through RT-DVS in real systems. Additionally, our 
simulations do predict accurately the energy consumption charac- 
teristics of real systems. Our measurements indicate that 20% to 
40% energy savings can be achieved, even including irreducible 
system energy overheads and using task sets with high values for 
both worst- and average- case utilizations. 

In the future, we would like to expand this work beyond the deter- 
ministic/absolute real-time paradigm presented here. In particular, 
we will investigate DVS with probabilistic or statistical deadline 
guarantees. We will also explore integration with other energy- 
conserving mechanisms, including application energy adaptation 
and energy-adaptive communication (both real-time and best-effort). 

Additionally, although developed for portable devices, RT-DVS is 
applicable widely in general real-time systems. The energy sav- 
ings works well for extending battery life in portable applications, 
but can also reduce the heat generated by the real-time embedded 
controllers in various factory or home automation products, or even 
reduce cooling requirements and costs in large-scale, multiproces- 
sor supercomputers. 
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