
The Application

Demo 

Challenges + Learnings

References

Background

There are often situations in the real world that require 
technological operation in a disconnected environment, i.e. 
one that does not have access to the internet at large or 
any form of cloud. There are three necessary components 
in such a situation:
• An infrastructure for network access (JIT Cloudlet [1])
• Computing resources (JIT Cloudlet)
• Useful applications and services (this project)

Fig. 1: An overview of Just-in-Time Cloudlet components.

In this project, I have created an application for 
communication, collaboration, and exploration in a 
disconnected scenario. Purpose: unlock communication 
and collaboration in use-cases for the Just-In-Time Cloudlet.

Dronacharya: Enabling guided collaboration in a 
disconnected environment
18843: Mobile and Pervasive Computing
Carnegie Mellon University

Akshunna Vaishnav
Mentored by Jim Blakley 

Just-In-Time Cloudlet

System Architecture

The application comprises of four main components:
• OpenScout, drone footage extraction +analysis
• OpenScout-to-WebRTC adapter, to send analyzed footage
• A signaling server, to facilitate WebRTC peer connections
• Clients, who see analyzed drone footage and talk to each other

The front-end is a JavaScript-based WebApp that prioritizes 
user-friendliness. Web sockets [4] are used for signaling.

OpenScout
(modified for WebRTC connections, drone 

analysis + bounding boxes)

Server Container

OpenScout-to-
WebRTC adapter

Signaling Server

Client 1

Client 3

Client 2

The application allows for:
• Asynchronous connect/disconnect 
• Shared drone footage viewing 
• Shared snapshot functionality

The application uses these technologies:
• OpenScout [2], the pre-existing object detection engine 

was used, changes were needed to transmit detected 
output to clients

• Industry-standard WebRTC [3] facilitates peer-to-peer 
collaboration, and requires NO cloud infrastructure, 
unlike Zoom, Skype, Discord, etc.

Dronacharya Use Case: Search and Rescue

Search and Rescue: allowing 
first responders to
1) collaborate with ease 
2) locate people quickly, 

through the use of a drone,
when they have no pre-
existing network connectivity

Future Work

The application provides a familiar 
interface to allow users to view drone 
footage and communicate with each 
other. Drone snapshots are taken to 
preserve a moment that was captured.

Future directions for development include:
• Drone image buffer can be replaced by a service which takes 

OpenScout output and conveys it to WebRTC Server container.
• Video recording of the drone footage
• Containerized deployment and real-world disconnected test

Magma 
Orc8r

ARM Developer Platform

Baicells eNB

Magma AGW
WebRTC

OpenScout

Kubernetes

Ubuntu 20.04

There were a few challenges along the way:
• Limited WebRTC API/resources for Python or Android
• Moving data across Python-JavaScript abstraction layer
• Limited exposure to JavaScript, WebSockets, Docker
• Allow asynchronous join/disconnect, clients and drone

Through this project, I learned:
• OS-agnosticism often simpler than multiple native apps
• Cloud-native at the edge JIT Cloudlet applications are worth 

exploring

A simple demo which uses image 
streams instead of live camera 
footage.

Note that the Web Application is 
accessible from any device 
through a web browser, and join-
leave is completely automatic.

Drone footage can be paused, and 
a single screenshot of the drone 
footage can be taken for analysis.

[1] “The Just-In-Time Cloudlet” (unpublished manuscript), James Blakley, Thomas Eiszler, Jan Harkes, 
Mahadev Satyanarayanan, Marc Meunier
[2] OpenScout: https://www.cmu.edu/scs/edgecomputing/articles/openscout.html
[3] https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API, https://peerjs.com/docs/
[4] https://socket.io/docs/v4/client-api/ 

https://www.cmu.edu/scs/edgecomputing/articles/openscout.html
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://peerjs.com/docs/
https://socket.io/docs/v4/client-api/

	Slide 1

